Your browser doesn't support javascript.
loading
The protein corona of circulating PEGylated liposomes.
Palchetti, Sara; Colapicchioni, Valentina; Digiacomo, Luca; Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; La Barbera, Giorgia; Laganà, Aldo.
Afiliação
  • Palchetti S; Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
  • Colapicchioni V; Istituto Italiano di Tecnologia, Center for Life Nano Science@Sapienza, Viale Regina Elena 291, 00161 Rome, Italy.
  • Digiacomo L; Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; Department of Bioscience and Biotechnology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, (MC), Italy.
  • Caracciolo G; Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy. Electronic address: giulio.caracciolo@uniroma1.it.
  • Pozzi D; Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; Istituti Fisioterapici Ospitalieri, Istituto Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy.
  • Capriotti AL; Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
  • La Barbera G; Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
  • Laganà A; Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
Biochim Biophys Acta ; 1858(2): 189-96, 2016 Feb.
Article em En | MEDLINE | ID: mdl-26607013
ABSTRACT
Following systemic administration, liposomes are covered by a 'corona' of proteins, and preserving the surface functionality is challenging. Coating the liposome surface with polyethylene glycol (PEG) is the most widely used anti-opsonization strategy, but it cannot fully preclude protein adsorption. To date, protein binding has been studied following in vitro incubation to predict the fate of liposomes in vivo, while dynamic incubation mimicking in vivo conditions remains largely unexplored. The main aim of this investigation was to determine whether shear stress, produced by physiologically relevant dynamic flow, could influence the liposome-protein corona. The corona of circulating PEGylated liposome was thoroughly compared with that formed by incubation in vitro. Systematic comparison in terms of size, surface charge and quantitative composition was made by dynamic light scattering, microelectrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Size of coronas formed under static vs. dynamic incubation did not appreciably differ from each other. On the other side, the corona of circulating liposomes was more negatively charged than its static counterpart. Of note, the variety of protein species in the corona formed in a dynamic flow was significantly wider. Collectively, these results demonstrated that the corona of circulating PEGylated liposomes can be considerably different from that formed in a static fluid. This seems to be a key factor to predict the biological activity of a liposomal formulation in a physiological environment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Proteínas Sanguíneas / Lipossomos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Proteínas Sanguíneas / Lipossomos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article