Your browser doesn't support javascript.
loading
Simulations Meet Experiment to Reveal New Insights into DNA Intrinsic Mechanics.
Ben Imeddourene, Akli; Elbahnsi, Ahmad; Guéroult, Marc; Oguey, Christophe; Foloppe, Nicolas; Hartmann, Brigitte.
Afiliação
  • Ben Imeddourene A; LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France.
  • Elbahnsi A; Université Pierre et Marie Curie, Paris, France.
  • Guéroult M; LBPA, CNRS, ENS Cachan, Université Paris-Saclay, Cachan, France.
  • Oguey C; LPTM, UMR 8089, Université de Cergy-Pontoise, Cergy-Pontoise, France.
  • Foloppe N; UMR S665, INSERM, Université Paris Diderot, INTS, Paris, France.
  • Hartmann B; LPTM, UMR 8089, Université de Cergy-Pontoise, Cergy-Pontoise, France.
PLoS Comput Biol ; 11(12): e1004631, 2015 Dec.
Article em En | MEDLINE | ID: mdl-26657165
ABSTRACT
The accurate prediction of the structure and dynamics of DNA remains a major challenge in computational biology due to the dearth of precise experimental information on DNA free in solution and limitations in the DNA force-fields underpinning the simulations. A new generation of force-fields has been developed to better represent the sequence-dependent B-DNA intrinsic mechanics, in particular with respect to the BI ↔ BII backbone equilibrium, which is essential to understand the B-DNA properties. Here, the performance of MD simulations with the newly updated force-fields Parmbsc0εζOLI and CHARMM36 was tested against a large ensemble of recent NMR data collected on four DNA dodecamers involved in nucleosome positioning. We find impressive progress towards a coherent, realistic representation of B-DNA in solution, despite residual shortcomings. This improved representation allows new and deeper interpretation of the experimental observables, including regarding the behavior of facing phosphate groups in complementary dinucleotides, and their modulation by the sequence. It also provides the opportunity to extensively revisit and refine the coupling between backbone states and inter base pair parameters, which emerges as a common theme across all the complementary dinucleotides. In sum, the global agreement between simulations and experiment reveals new aspects of intrinsic DNA mechanics, a key component of DNA-protein recognition.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Análise de Sequência de Proteína / Simulação de Dinâmica Molecular / Modelos Químicos / Conformação de Ácido Nucleico Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Análise de Sequência de Proteína / Simulação de Dinâmica Molecular / Modelos Químicos / Conformação de Ácido Nucleico Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2015 Tipo de documento: Article