Your browser doesn't support javascript.
loading
Investigation of 6-O-methyl-scutellarein metabolites in rats by ultra-flow liquid chromatography/quadrupole-time-of-flight mass spectrometry.
Zhang, Wei; Li, Nian-Guang; Tang, Yu-Ping; Dong, Ze-Xi; Gu, Ting; Wu, Wen-Yu; Zhang, Peng-Xuan; Yu, Shao-Peng; Duan, Jin-Ao; Shi, Zhi-Hao.
Afiliação
  • Zhang W; a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China ;
  • Li NG; a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China ;
  • Tang YP; a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China ;
  • Dong ZX; a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China ;
  • Gu T; a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China ;
  • Wu WY; a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China ;
  • Zhang PX; a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China ;
  • Yu SP; a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China ;
  • Duan JA; a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine , Nanjing University of Chinese Medicine , Nanjing , P.R. China ;
  • Shi ZH; b Department of Organic Chemistry , China Pharmaceutical University , Nanjing , P.R. China.
Pharm Biol ; 54(10): 2158-67, 2016 Oct.
Article em En | MEDLINE | ID: mdl-26955854
ABSTRACT
Context Scutellarin (1) has been widely used in China to treat acute cerebral infarction and paralysis induced by cerebrovascular diseases. However, scutellarin (1) has unstable metabolic characteristics. Objective The metabolic profile of 6-O-scutellarein was studied to determine its metabolic stability in vivo. Materials and methods In this study, a method of UFLC/Q-TOF MS was used to study the 6-O-methyl-scutellarein metabolites in rat plasma, urine, bile and faeces after oral administration of 6-O-methyl-scutellarein (3). One hour after oral administration of 6-O-methyl-scutellarein (3) (34 mg/kg), approximately 1 mL blood samples were collected in EP tubes from all groups. Bile, urine and faeces samples were collected from eight SD rats during 0-24 h after oral administration. The mass defect filtering, dynamic background subtraction and information dependent acquisition techniques were also used to identify the 6-O-methyl-scutellarein metabolites. Results The parent compound 6-O-methyl-scutellarein (3) was found in rat urine, plasma, bile and faeces. The glucuronide conjugate of 6-O-methyl-scutellarein (M1, M2), diglucuronide conjugate of 6-O-methyl-scutellarein (M3), sulphate conjugate of 6-O-methyl-scutellarein (M4), glucuronide and sulphate conjugate of 6-O-methyl-scutellarein (M5), methylated conjugate of 6-O-methyl-scutellarein (M6) were detected in rat urine. M1, M2 and M3 were detected in rat bile. M1 was found in rat plasma and M7 was detected in faeces. Discussion and conclusion Because the parent compound 6-O-methyl-scutellarein (3) was found in rat urine, plasma, bile and faeces, we speculate that 6-O-methyl-scutellarein (3) had good metabolic stability in vivo. This warrants further study to develop it as a promising candidate for the treatment of ischemic cerebrovascular disease.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Medicamentos de Ervas Chinesas / Cromatografia Líquida / Flavonas / Espectrometria de Massas em Tandem Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Medicamentos de Ervas Chinesas / Cromatografia Líquida / Flavonas / Espectrometria de Massas em Tandem Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article