Your browser doesn't support javascript.
loading
Preparation of High-Efficiency Cytochrome c-Imprinted Polymer on the Surface of Magnetic Carbon Nanotubes by Epitope Approach via Metal Chelation and Six-Membered Ring.
Qin, Ya-Ping; Li, Dong-Yan; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui.
Afiliação
  • Qin YP; College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94
  • Li DY; College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94
  • He XW; College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94
  • Li WY; College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94
  • Zhang YK; College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94
ACS Appl Mater Interfaces ; 8(16): 10155-63, 2016 04 27.
Article em En | MEDLINE | ID: mdl-27049646
A novel epitope molecularly imprinted polymer on the surface of magnetic carbon nanotubes (MCNTs@EMIP) was successfully fabricated to specifically recognize target protein cytochrome c (Cyt C) with high performance. The peptides sequences corresponding to the surface-exposed C-terminus domains of Cyt C was selected as epitope template molecule, and commercially available zinc acrylate and ethylene glycol dimethacrylate (EGDMA) were employed as functional monomer and cross-linker, respectively, to synthesize MIP via free radical polymerization. The epitope was immobilized via metal chelation and six-membered ring formed between the functional monomer and the hydroxyl and amino groups of the epitope. The resulting MCNTs@EMIP exhibited specific recognition ability toward target Cyt C including more satisfactory imprinting factor (about 11.7) than that of other reported imprinting methods. In addition, the MCNTs@EMIP demonstrated a high adsorption amount (about 780.0 mg g(-1)) and excellent selectivity. Besides, the magnetic property of the support material made the processes easy and highly efficient by assistance of an external magnetic field. High-performance liquid chromatography analysis of Cyt C in bovine blood real sample and protein mixture indicated that the specificity was not affected by other competitive proteins, which forcefully stated that the MCNTs@EMIP had potential to be applied in bioseparation area. In brief, this study provided a new protocol to detect target protein in complex sample via epitope imprinting approach and surface imprinting strategy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanotubos de Carbono Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanotubos de Carbono Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article