Your browser doesn't support javascript.
loading
Layered Double Hydroxide Nanotransporter for Molecule Delivery to Intact Plant Cells.
Bao, Wenlong; Wang, Junya; Wang, Qiang; O'Hare, Dermot; Wan, Yinglang.
Afiliação
  • Bao W; College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
  • Wang J; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
  • Wang Q; College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
  • O'Hare D; Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom.
  • Wan Y; College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
Sci Rep ; 6: 26738, 2016 05 25.
Article em En | MEDLINE | ID: mdl-27221055
ABSTRACT
Here we report a powerful method that facilitates the transport of biologically active materials across the cell wall barrier in plant cells. Positively charged delaminated layered double hydroxide lactate nanosheets (LDH-lactate-NS) with a 0.5‒2 nm thickness and 30‒60 nm diameter exhibit a high adsorptive capacity for negatively charged biomolecules, including fluorescent dyes such as tetramethyl rhodamine isothiocyanate (TRITC), fluorescein isothiocyanate isomer I(FITC) and DNA molecules, forming neutral LDH-nanosheet conjugates. These neutral conjugates can shuttle the bound fluorescent dye into the cytosol of intact plant cell very efficiently. Furthermore, typical inhibitors of endocytosis and low temperature incubation did not prevent LDH-lactate-NS internalization, suggesting that LDH-lactate-NS penetrated the plasma membrane via non-endocytic pathways, which will widen the applicability to a variety of plant cells. Moreover, the absence of unwanted side effects in our cytological studies, and the nuclear localization of ssDNA-FITC suggest that nano-LDHs have potential application as a novel gene carrier to plants.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nicotiana / Portadores de Fármacos / Nanopartículas / Células Vegetais / Lactatos Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nicotiana / Portadores de Fármacos / Nanopartículas / Células Vegetais / Lactatos Idioma: En Ano de publicação: 2016 Tipo de documento: Article