Your browser doesn't support javascript.
loading
Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System.
Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang.
Afiliação
  • Ni J; National Engineering and Technology Center for Agriculture/Jiangsu Key Laboratory for Information Agriculture/Collaborative Innovation Center for Modern Crop Production/Jiangsu Collaborative Innovation Center for the Technology and Application of Internet of Things, Nanjing Agriculture University, N
  • Yao L; National Engineering and Technology Center for Agriculture/Jiangsu Key Laboratory for Information Agriculture/Collaborative Innovation Center for Modern Crop Production/Jiangsu Collaborative Innovation Center for the Technology and Application of Internet of Things, Nanjing Agriculture University, N
  • Zhang J; Nanjing Institute of Agricultural Mechanization of National Ministry of Agriculture, Nanjing 210014, China. zhangjc9@163.com.
  • Cao W; National Engineering and Technology Center for Agriculture/Jiangsu Key Laboratory for Information Agriculture/Collaborative Innovation Center for Modern Crop Production/Jiangsu Collaborative Innovation Center for the Technology and Application of Internet of Things, Nanjing Agriculture University, N
  • Zhu Y; National Engineering and Technology Center for Agriculture/Jiangsu Key Laboratory for Information Agriculture/Collaborative Innovation Center for Modern Crop Production/Jiangsu Collaborative Innovation Center for the Technology and Application of Internet of Things, Nanjing Agriculture University, N
  • Tai X; National Engineering and Technology Center for Agriculture/Jiangsu Key Laboratory for Information Agriculture/Collaborative Innovation Center for Modern Crop Production/Jiangsu Collaborative Innovation Center for the Technology and Application of Internet of Things, Nanjing Agriculture University, N
Sensors (Basel) ; 17(3)2017 Mar 03.
Article em En | MEDLINE | ID: mdl-28273815
In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R²) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Gases Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Gases Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article