Your browser doesn't support javascript.
loading
Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis.
Andreone, Benjamin J; Chow, Brian Wai; Tata, Aleksandra; Lacoste, Baptiste; Ben-Zvi, Ayal; Bullock, Kevin; Deik, Amy A; Ginty, David D; Clish, Clary B; Gu, Chenghua.
Afiliação
  • Andreone BJ; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
  • Chow BW; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
  • Tata A; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
  • Lacoste B; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
  • Ben-Zvi A; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
  • Bullock K; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  • Deik AA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  • Ginty DD; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
  • Clish CB; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  • Gu C; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. Electronic address: chenghua_gu@hms.harvard.edu.
Neuron ; 94(3): 581-594.e5, 2017 May 03.
Article em En | MEDLINE | ID: mdl-28416077
ABSTRACT
The blood-brain barrier (BBB) provides a constant homeostatic brain environment that is essential for proper neural function. An unusually low rate of vesicular transport (transcytosis) has been identified as one of the two unique properties of CNS endothelial cells, relative to peripheral endothelial cells, that maintain the restrictive quality of the BBB. However, it is not known how this low rate of transcytosis is achieved. Here we provide a mechanism whereby the regulation of CNS endothelial cell lipid composition specifically inhibits the caveolae-mediated transcytotic route readily used in the periphery. An unbiased lipidomic analysis reveals significant differences in endothelial cell lipid signatures from the CNS and periphery, which underlie a suppression of caveolae vesicle formation and trafficking in brain endothelial cells. Furthermore, lipids transported by Mfsd2a establish a unique lipid environment that inhibits caveolae vesicle formation in CNS endothelial cells to suppress transcytosis and ensure BBB integrity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Membrana Transportadoras / Barreira Hematoencefálica / Cavéolas / Metabolismo dos Lipídeos / Transcitose Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Membrana Transportadoras / Barreira Hematoencefálica / Cavéolas / Metabolismo dos Lipídeos / Transcitose Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article