A comparison of pediatric and adult CT organ dose estimation methods.
BMC Med Imaging
; 17(1): 28, 2017 04 26.
Article
em En
| MEDLINE
| ID: mdl-28446130
BACKGROUND: Computed Tomography (CT) contributes up to 50% of the medical exposure to the United States population. Children are considered to be at higher risk of developing radiation-induced tumors due to the young age of exposure and increased tissue radiosensitivity. Organ dose estimation is essential for pediatric and adult patient cancer risk assessment. The objective of this study is to validate the VirtualDose software in comparison to currently available software and methods for pediatric and adult CT organ dose estimation. METHODS: Five age groups of pediatric patients and adult patients were simulated by three organ dose estimators. Head, chest, abdomen-pelvis, and chest-abdomen-pelvis CT scans were simulated, and doses to organs both inside and outside the scan range were compared. For adults, VirtualDose was compared against ImPACT and CT-Expo. For pediatric patients, VirtualDose was compared to CT-Expo and compared to size-based methods from literature. Pediatric to adult effective dose ratios were also calculated with VirtualDose, and were compared with the ranges of effective dose ratios provided in ImPACT. RESULTS: In-field organs see less than 60% difference in dose between dose estimators. For organs outside scan range or distributed organs, a five times' difference can occur. VirtualDose agrees with the size-based methods within 20% difference for the organs investigated. Between VirtualDose and ImPACT, the pediatric to adult ratios for effective dose are compared, and less than 21% difference is observed for chest scan while more than 40% difference is observed for head-neck scan and abdomen-pelvis scan. For pediatric patients, 2 cm scan range change can lead to a five times dose difference in partially scanned organs. CONCLUSIONS: VirtualDose is validated against CT-Expo and ImPACT with relatively small discrepancies in dose for organs inside scan range, while large discrepancies in dose are observed for organs outside scan range. Patient-specific organ dose estimation is possible using the size-based methods, and VirtualDose agrees with size-based method for the organs investigated. Careful range selection for CT protocols is necessary for organ dose optimization for pediatric and adult patients.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Vísceras
/
Envelhecimento
/
Tomografia Computadorizada por Raios X
/
Contagem Corporal Total
/
Exposição à Radiação
/
Modelos Biológicos
Tipo de estudo:
Diagnostic_studies
/
Evaluation_studies
/
Health_economic_evaluation
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Adolescent
/
Child
/
Child, preschool
/
Female
/
Humans
/
Infant
/
Male
/
Newborn
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article