Your browser doesn't support javascript.
loading
Dissecting Multivalent Lectin-Carbohydrate Recognition Using Polyvalent Multifunctional Glycan-Quantum Dots.
Guo, Yuan; Nehlmeier, Inga; Poole, Emma; Sakonsinsiri, Chadamas; Hondow, Nicole; Brown, Andy; Li, Qing; Li, Shuang; Whitworth, Jessie; Li, Zhongjun; Yu, Anchi; Brydson, Rik; Turnbull, W Bruce; Pöhlmann, Stefan; Zhou, Dejian.
Afiliação
  • Nehlmeier I; Infection Biology Unit, German Primate Center , Kellnerweg 4, Gottingen 37077, Germany.
  • Li Q; Department of Chemical Biology, Peking University Health Sciences Centre , Beijing 100191, People's Republic of China.
  • Li S; Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China.
  • Li Z; Department of Chemical Biology, Peking University Health Sciences Centre , Beijing 100191, People's Republic of China.
  • Yu A; Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China.
  • Pöhlmann S; Infection Biology Unit, German Primate Center , Kellnerweg 4, Gottingen 37077, Germany.
J Am Chem Soc ; 139(34): 11833-11844, 2017 08 30.
Article em En | MEDLINE | ID: mdl-28786666
ABSTRACT
Multivalent protein-carbohydrate interactions initiate the first contacts between virus/bacteria and target cells, which ultimately lead to infection. Understanding the structures and binding modes involved is vital to the design of specific, potent multivalent inhibitors. However, the lack of structural information on such flexible, complex, and multimeric cell surface membrane proteins has often hampered such endeavors. Herein, we report that quantum dots (QDs) displayed with a dense array of mono-/disaccharides are powerful probes for multivalent protein-glycan interactions. Using a pair of closely related tetrameric lectins, DC-SIGN and DC-SIGNR, which bind to the HIV and Ebola virus glycoproteins (EBOV-GP) to augment viral entry and infect target cells, we show that such QDs efficiently dissect the different DC-SIGN/R-glycan binding modes (tetra-/di-/monovalent) through a combination of multimodal readouts Förster resonance energy transfer (FRET), hydrodynamic size measurement, and transmission electron microscopy imaging. We also report a new QD-FRET method for quantifying QD-DC-SIGN/R binding affinity, revealing that DC-SIGN binds to the QD >100-fold tighter than does DC-SIGNR. This result is consistent with DC-SIGN's higher trans-infection efficiency of some HIV strains over DC-SIGNR. Finally, we show that the QDs potently inhibit DC-SIGN-mediated enhancement of EBOV-GP-driven transduction of target cells with IC50 values down to 0.7 nM, matching well to their DC-SIGN binding constant (apparent Kd = 0.6 nM) measured by FRET. These results suggest that the glycan-QDs are powerful multifunctional probes for dissecting multivalent protein-ligand recognition and predicting glyconanoparticle inhibition of virus infection at the cellular level.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polissacarídeos / Proteínas Virais / Glicoproteínas / Moléculas de Adesão Celular / Receptores de Superfície Celular / Doença pelo Vírus Ebola / Lectinas Tipo C / Pontos Quânticos / Ebolavirus Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polissacarídeos / Proteínas Virais / Glicoproteínas / Moléculas de Adesão Celular / Receptores de Superfície Celular / Doença pelo Vírus Ebola / Lectinas Tipo C / Pontos Quânticos / Ebolavirus Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article