Your browser doesn't support javascript.
loading
Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps.
Dostálová, Anna; Rommelaere, Samuel; Poidevin, Mickael; Lemaitre, Bruno.
Afiliação
  • Dostálová A; Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015, Lausanne, Switzerland. anna.svarovska@gmail.com.
  • Rommelaere S; Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
  • Poidevin M; Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
  • Lemaitre B; Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015, Lausanne, Switzerland. bruno.lemaitre@epfl.ch.
BMC Biol ; 15(1): 79, 2017 09 05.
Article em En | MEDLINE | ID: mdl-28874153
ABSTRACT

BACKGROUND:

Members of the thioester-containing protein (TEP) family contribute to host defence in both insects and mammals. However, their role in the immune response of Drosophila is elusive. In this study, we address the role of TEPs in Drosophila immunity by generating a mutant fly line, referred to as TEPq Δ , lacking the four immune-inducible TEPs, TEP1, 2, 3 and 4.

RESULTS:

Survival analyses with TEPq Δ flies reveal the importance of these proteins in defence against entomopathogenic fungi, Gram-positive bacteria and parasitoid wasps. Our results confirm that TEPs are required for efficient phagocytosis of bacteria, notably for the two Gram-positive species tested, Staphylococcus aureus and Enterococcus faecalis. Furthermore, we show that TEPq Δ flies have reduced Toll pathway activation upon microbial infection, resulting in lower expression of antimicrobial peptide genes. Epistatic analyses suggest that TEPs function upstream or independently of the serine protease ModSP at an initial stage of Toll pathway activation.

CONCLUSIONS:

Collectively, our study brings new insights into the role of TEPs in insect immunity. It reveals that TEPs participate in both humoral and cellular arms of immune response in Drosophila. In particular, it shows the importance of TEPs in defence against Gram-positive bacteria and entomopathogenic fungi, notably by promoting Toll pathway activation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Drosophila / Drosophila melanogaster / Mutação com Perda de Função / Imunidade Inata Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Drosophila / Drosophila melanogaster / Mutação com Perda de Função / Imunidade Inata Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article