Your browser doesn't support javascript.
loading
Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints.
Schwessinger, Ron; Suciu, Maria C; McGowan, Simon J; Telenius, Jelena; Taylor, Stephen; Higgs, Doug R; Hughes, Jim R.
Afiliação
  • Schwessinger R; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom.
  • Suciu MC; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom.
  • McGowan SJ; Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom.
  • Telenius J; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom.
  • Taylor S; Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom.
  • Higgs DR; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom.
  • Hughes JR; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom.
Genome Res ; 27(10): 1730-1742, 2017 10.
Article em En | MEDLINE | ID: mdl-28904015
ABSTRACT
In the era of genome-wide association studies (GWAS) and personalized medicine, predicting the impact of single nucleotide polymorphisms (SNPs) in regulatory elements is an important goal. Current approaches to determine the potential of regulatory SNPs depend on inadequate knowledge of cell-specific DNA binding motifs. Here, we present Sasquatch, a new computational approach that uses DNase footprint data to estimate and visualize the effects of noncoding variants on transcription factor binding. Sasquatch performs a comprehensive k-mer-based analysis of DNase footprints to determine any k-mer's potential for protein binding in a specific cell type and how this may be changed by sequence variants. Therefore, Sasquatch uses an unbiased approach, independent of known transcription factor binding sites and motifs. Sasquatch only requires a single DNase-seq data set per cell type, from any genotype, and produces consistent predictions from data generated by different experimental procedures and at different sequence depths. Here we demonstrate the effectiveness of Sasquatch using previously validated functional SNPs and benchmark its performance against existing approaches. Sasquatch is available as a versatile webtool incorporating publicly available data, including the human ENCODE collection. Thus, Sasquatch provides a powerful tool and repository for prioritizing likely regulatory SNPs in the noncoding genome.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Análise de Sequência de DNA / Pegada de DNA / Elementos de Resposta / Polimorfismo de Nucleotídeo Único / Células Eritroides / Desoxirribonucleases / Motivos de Nucleotídeos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Análise de Sequência de DNA / Pegada de DNA / Elementos de Resposta / Polimorfismo de Nucleotídeo Único / Células Eritroides / Desoxirribonucleases / Motivos de Nucleotídeos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article