Novel MBR_based main stream biological nutrient removal process: high performance and microbial community.
Biodegradation
; 29(1): 11-22, 2018 02.
Article
em En
| MEDLINE
| ID: mdl-29080942
For municipal wastewater treatment, main stream biological nutrient removal (BNR) process is becoming more and more important. This lab-scale study, novel MBR_based BNR processes (named A2N-MBR and A2NO-MBR) were built. Comparison of the COD removal, results obtained demonstrated that COD removal efficiencies were almost the same in three processes, with effluent concentration all bellowed 30 mg L-1. However, the two-sludge systems (A2N-MBR and A2NO-MBR) had an obvious advantage over the A2/O for denitrification and phosphorus removal, with the average TP removal rates of 91.20, 98.05% and TN removal rates of 73.00, 79.49%, respectively, higher than that of 86.45 and 61.60% in A2/O process. Illumina Miseq sequencing revealed that Candidatus_Accumulibacter, which is capable of using nitrate as an electron acceptor for phosphorus and nitrogen removal simultaneously, was the dominant phylum in both A2N-MBR and A2NO-MBR process, accounting for 28.74 and 23.98%, respectively. Distinguishingly, major organism groups related to nitrogen and phosphorus removal in A2/O system were Anaerolineaceae_uncultured, Saprospiraceae_uncultured and Thauera, with proportions of 11.31, 8.56 and 5.00%, respectively. Hence, the diversity of dominant PAOs group was likely responsible for the difference in nitrogen and phosphorus removal in the three processes.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Fósforo
/
Bactérias
/
Reatores Biológicos
/
Membranas Artificiais
/
Nitrogênio
Idioma:
En
Ano de publicação:
2018
Tipo de documento:
Article