Your browser doesn't support javascript.
loading
Acquisition of the Phosphate Transporter NptA Enhances Staphylococcus aureus Pathogenesis by Improving Phosphate Uptake in Divergent Environments.
Kelliher, Jessica L; Radin, Jana N; Grim, Kyle P; Párraga Solórzano, Paola K; Degnan, Patrick H; Kehl-Fie, Thomas E.
Afiliação
  • Kelliher JL; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
  • Radin JN; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
  • Grim KP; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
  • Párraga Solórzano PK; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
  • Degnan PH; Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armada ESPE, Sangolquí, Ecuador.
  • Kehl-Fie TE; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
Infect Immun ; 86(1)2018 01.
Article em En | MEDLINE | ID: mdl-29084897
During infection, pathogens must obtain all inorganic nutrients, such as phosphate, from the host. Despite the essentiality of phosphate for all forms of life, how Staphylococcus aureus obtains this nutrient during infection is unknown. Differing from Escherichia coli, the paradigm for bacterial phosphate acquisition, which has two inorganic phosphate (Pi) importers, genomic analysis suggested that S. aureus possesses three distinct Pi transporters: PstSCAB, PitA, and NptA. While pitA and nptA are expressed in phosphate-replete media, expression of all three transporters is induced by phosphate limitation. The loss of a single transporter did not affect S. aureus However, disruption of any two systems significantly reduced Pi accumulation and growth in divergent environments. These findings indicate that PstSCAB, PitA, and NptA have overlapping but nonredundant functions, thus expanding the environments in which S. aureus can successfully obtain Pi Consistent with this idea, in a systemic mouse model of disease, loss of any one transporter did not decrease staphylococcal virulence. However, loss of NptA in conjunction with either PstSCAB or PitA significantly reduced the ability of S. aureus to cause infection. These observations suggest that Pi acquisition via NptA is particularly important for the pathogenesis of S. aureus While our analysis suggests that NptA homologs are widely distributed among bacteria, closely related less pathogenic staphylococcal species do not possess this importer. Altogether, these observations indicate that Pi uptake by S. aureus differs from established models and that acquisition of a third transporter enhances the ability of the bacterium to cause infection.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Membrana Transportadoras / Fosfatos / Infecções Estafilocócicas / Staphylococcus aureus / Proteínas de Bactérias / Proteínas de Transporte de Fosfato Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Membrana Transportadoras / Fosfatos / Infecções Estafilocócicas / Staphylococcus aureus / Proteínas de Bactérias / Proteínas de Transporte de Fosfato Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article