Including crossbred pigs in the genomic relationship matrix through utilization of both linkage disequilibrium and linkage analysis.
J Anim Sci
; 95(12): 5197-5207, 2017 Dec.
Article
em En
| MEDLINE
| ID: mdl-29293760
In pig breeding, the final product is a crossbred (CB) animal, while selection is performed at the purebred (PB) level using mainly PB data. However, incorporating CB data in genetic evaluations is expected to result in greater genetic progress at the CB level. Currently, there is no optimal way to include CB genotypes into the genomic relationship matrix. This is because, in single-step genomic BLUP, which is the most commonly used method, genomic and pedigree relationships must refer to the same base. This may not be the case when several breeds and CB are included. An alternative to overcome this issue may be to use a genomic relationship matrix (G matrix) that accounts for both linkage disequilibrium (LD) and linkage analysis (LA), called G. The objectives of this study were to further develop the G matrix approach to utilize both PB and CB genotypes simultaneously, to investigate its performance, and the general added value of including CB genotypes in genomic evaluations. Data were available on Dutch Landrace, Large White, and the F1 cross of those breeds. In total, 7 different G matrix compositions (PB alone, PB together, each PB with the CB, all genotypes across breeds, and G) were tested on 3 maternal traits: total number born (TNB), live born (LB), and gestation length (GL). Results show that G gave the greatest prediction accuracy of all the relationship matrices tested for PB prediction, but not for CB prediction. Including CB genotypes in general increased prediction accuracy for all breeds. However, in some cases, these increases in prediction accuracy were not significant (at < 0.05). To conclude, CB genotypes increased prediction accuracy for some of the traits and breeds, but not for all. The G matrix had significantly greater prediction accuracy in PB than the other G matrix with both PB and CB genotypes, except in one case. While for CB, the G matrix with genotypes across all breeds gave the greatest accuracy, though this was not significantly different from G. Computation time was high for G, and research will be needed to reduce its computational costs to make it feasible for use in routine evaluations. The main conclusion is that inclusion of CB genotypes is beneficial for both PB and CB animals.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Suínos
/
Desequilíbrio de Ligação
/
Genômica
/
Ligação Genética
Limite:
Animals
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article