Your browser doesn't support javascript.
loading
Preparation and physicochemical characterization of T-OA PLGA microspheres.
Fu, Jing; Dong, Xiao-Xu; Zeng, Zu-Ping; Yin, Xing-Bin; Li, Fa-Wei; Ni, Jian.
Afiliação
  • Fu J; Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
  • Dong XX; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
  • Zeng ZP; Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China.
  • Yin XB; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
  • Li FW; Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China.
  • Ni J; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China. Electronic address: njtcm@263.net.
Chin J Nat Med ; 15(12): 912-916, 2017 Dec.
Article em En | MEDLINE | ID: mdl-29329648
ABSTRACT
As the carrier of water-insoluble drugs, microspheres can play a role in increasing solubility and delaying releasing essence. The objective of this study was to improve the solubility and to delay the release of a newly discovered antitumor compound 3ß-hydroxyolea-12-en-28-oic acid-3, 5, 6-trimethylpyrazin-2-methyl ester (T-OA). Early-stage preparation discovery concept (EPDC) was employed in the present study. The preparation, physicochemical characterization, and drug release properties of PLGA microspheres were evaluated. T-OA-loaded PLGA microspheres were prepared by an oil-in-water (O/W) emulsification solvent evaporation method. Characterization and release behaviors of the T-OA PLGA microspheres were evaluated by X-ray diffract (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and high performance liquid chromatography (HPLC). The results demonstrated that T-OA-loaded PLGA microspheres could be successfully obtained through solvent evaporation method with appropriate morphologic characteristics and high encapsulation efficiency. The XRD analysis showed that T-OA would be either molecularly dispersed in the polymer or distributed in an amorphous form. The DSC and FTIR analysis proved that there were interactions between T-OA and PLGA polymer. SEM observations displayed the morphology of the microspheres was homogeneous and the majority of the spheres ranged between 50 and 150 µm. The drug release behavior of the microspheres in the phosphate buffered saline medium exhibited a sustained release and the duration of the release lasted for more than 23 days, which was fit with zero-order release pattern with r2 = 0.9947. In conclusion, TOA-loaded PLGA microspheres might hold great promise for using as a drug-delivery system in biomedical applications.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácido Poliglicólico / Portadores de Fármacos / Ácido Láctico / Preparações de Ação Retardada / Microesferas / Antineoplásicos Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácido Poliglicólico / Portadores de Fármacos / Ácido Láctico / Preparações de Ação Retardada / Microesferas / Antineoplásicos Idioma: En Ano de publicação: 2017 Tipo de documento: Article