Your browser doesn't support javascript.
loading
Post genome-wide association analysis: dissecting computational pathway/network-based approaches.
Chimusa, Emile R; Dalvie, Shareefa; Dandara, Collet; Wonkam, Ambroise; Mazandu, Gaston K.
Afiliação
  • Chimusa ER; Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Level 3, Wernher and Beit North, Private Bag, Rondebosch, 7700, Anzio road, Observatory Cape Town, South Africa.
  • Dalvie S; Department of Psychiatry and Mental Health, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
  • Dandara C; Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Private Bag, Rondebosch, 7700, Cape Town, South Africa.
  • Wonkam A; Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Private Bag, Rondebosch, 7700, Cape Town, South Africa.
  • Mazandu GK; Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Private Bag, Rondebosch, 7700, Cape Town, South Africa; African Institute for Mathematical Sciences, 7945 Muizenberg, Cape Town, South Afr
Brief Bioinform ; 20(2): 690-700, 2019 03 25.
Article em En | MEDLINE | ID: mdl-29701762
ABSTRACT
Over thousands of genetic associations to diseases have been identified by genome-wide association studies (GWASs), which conceptually is a single-marker-based approach. There are potentially many uses of these identified variants, including a better understanding of the pathogenesis of diseases, new leads for studying underlying risk prediction and clinical prediction of treatment. However, because of inadequate power, GWAS might miss disease genes and/or pathways with weak genetic or strong epistatic effects. Driven by the need to extract useful information from GWAS summary statistics, post-GWAS approaches (PGAs) were introduced. Here, we dissect and discuss advances made in pathway/network-based PGAs, with a particular focus on protein-protein interaction networks that leverage GWAS summary statistics by combining effects of multiple loci, subnetworks or pathways to detect genetic signals associated with complex diseases. We conclude with a discussion of research areas where further work on summary statistic-based methods is needed.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biologia Computacional / Estudo de Associação Genômica Ampla Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biologia Computacional / Estudo de Associação Genômica Ampla Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article