Your browser doesn't support javascript.
loading
Gallium 68 PSMA-11 PET/MR Imaging in Patients with Intermediate- or High-Risk Prostate Cancer.
Park, Sonya Youngju; Zacharias, Claudia; Harrison, Caitlyn; Fan, Richard E; Kunder, Christian; Hatami, Negin; Giesel, Frederik; Ghanouni, Pejman; Daniel, Bruce; Loening, Andreas M; Sonn, Geoffrey A; Iagaru, Andrei.
Afiliação
  • Park SY; From the Division of Nuclear Medicine and Molecular Imaging (S.Y.P., C.Z., C.H., N.H., A.I.) and Departments of Urology (R.E.F., G.A.S.), Pathology (C.K.), and Radiology (P.G., B.D., A.M.L.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Department of Nucle
  • Zacharias C; From the Division of Nuclear Medicine and Molecular Imaging (S.Y.P., C.Z., C.H., N.H., A.I.) and Departments of Urology (R.E.F., G.A.S.), Pathology (C.K.), and Radiology (P.G., B.D., A.M.L.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Department of Nucle
  • Harrison C; From the Division of Nuclear Medicine and Molecular Imaging (S.Y.P., C.Z., C.H., N.H., A.I.) and Departments of Urology (R.E.F., G.A.S.), Pathology (C.K.), and Radiology (P.G., B.D., A.M.L.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Department of Nucle
  • Fan RE; From the Division of Nuclear Medicine and Molecular Imaging (S.Y.P., C.Z., C.H., N.H., A.I.) and Departments of Urology (R.E.F., G.A.S.), Pathology (C.K.), and Radiology (P.G., B.D., A.M.L.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Department of Nucle
  • Kunder C; From the Division of Nuclear Medicine and Molecular Imaging (S.Y.P., C.Z., C.H., N.H., A.I.) and Departments of Urology (R.E.F., G.A.S.), Pathology (C.K.), and Radiology (P.G., B.D., A.M.L.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Department of Nucle
  • Hatami N; From the Division of Nuclear Medicine and Molecular Imaging (S.Y.P., C.Z., C.H., N.H., A.I.) and Departments of Urology (R.E.F., G.A.S.), Pathology (C.K.), and Radiology (P.G., B.D., A.M.L.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Department of Nucle
  • Giesel F; From the Division of Nuclear Medicine and Molecular Imaging (S.Y.P., C.Z., C.H., N.H., A.I.) and Departments of Urology (R.E.F., G.A.S.), Pathology (C.K.), and Radiology (P.G., B.D., A.M.L.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Department of Nucle
  • Ghanouni P; From the Division of Nuclear Medicine and Molecular Imaging (S.Y.P., C.Z., C.H., N.H., A.I.) and Departments of Urology (R.E.F., G.A.S.), Pathology (C.K.), and Radiology (P.G., B.D., A.M.L.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Department of Nucle
  • Daniel B; From the Division of Nuclear Medicine and Molecular Imaging (S.Y.P., C.Z., C.H., N.H., A.I.) and Departments of Urology (R.E.F., G.A.S.), Pathology (C.K.), and Radiology (P.G., B.D., A.M.L.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Department of Nucle
  • Loening AM; From the Division of Nuclear Medicine and Molecular Imaging (S.Y.P., C.Z., C.H., N.H., A.I.) and Departments of Urology (R.E.F., G.A.S.), Pathology (C.K.), and Radiology (P.G., B.D., A.M.L.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Department of Nucle
  • Sonn GA; From the Division of Nuclear Medicine and Molecular Imaging (S.Y.P., C.Z., C.H., N.H., A.I.) and Departments of Urology (R.E.F., G.A.S.), Pathology (C.K.), and Radiology (P.G., B.D., A.M.L.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Department of Nucle
  • Iagaru A; From the Division of Nuclear Medicine and Molecular Imaging (S.Y.P., C.Z., C.H., N.H., A.I.) and Departments of Urology (R.E.F., G.A.S.), Pathology (C.K.), and Radiology (P.G., B.D., A.M.L.), Stanford University Medical Center, 300 Pasteur Dr, Room H-2200, Stanford, CA 94305; and Department of Nucle
Radiology ; 288(2): 495-505, 2018 08.
Article em En | MEDLINE | ID: mdl-29786490
ABSTRACT
Purpose To report the results of dual-time-point gallium 68 (68Ga) prostate-specific membrane antigen (PSMA)-11 positron emission tomography (PET)/magnetic resonance (MR) imaging prior to prostatectomy in patients with intermediate- or high-risk cancer. Materials and Methods Thirty-three men who underwent conventional imaging as clinically indicated and who were scheduled for radical prostatectomy with pelvic lymph node dissection were recruited for this study. A mean dose of 4.1 mCi ± 0.7 (151.7 MBq ± 25.9) of 68Ga-PSMA-11 was administered. Whole-body images were acquired starting 41-61 minutes after injection by using a GE SIGNA PET/MR imaging unit, followed by an additional pelvic PET/MR imaging acquisition at 87-125 minutes after injection. PET/MR imaging findings were compared with findings at multiparametric MR imaging (including diffusion-weighted imaging, T2-weighted imaging, and dynamic contrast material-enhanced imaging) and were correlated with results of final whole-mount pathologic examination and pelvic nodal dissection to yield sensitivity and specificity. Dual-time-point metabolic parameters (eg, maximum standardized uptake value [SUVmax]) were compared by using a paired t test and were correlated with clinical and histopathologic variables including prostate-specific antigen level, Gleason score, and tumor volume. Results Prostate cancer was seen at 68Ga-PSMA-11 PET in all 33 patients, whereas multiparametric MR imaging depicted Prostate Imaging Reporting and Data System (PI-RADS) 4 or 5 lesions in 26 patients and PI-RADS 3 lesions in four patients. Focal uptake was seen in the pelvic lymph nodes in five patients. Pathologic examination confirmed prostate cancer in all patients, as well as nodal metastasis in three. All patients with normal pelvic nodes in PET/MR imaging had no metastases at pathologic examination. The accumulation of 68Ga-PSMA-11 increased at later acquisition times, with higher mean SUVmax (15.3 vs 12.3, P < .001). One additional prostate cancer was identified only at delayed imaging. Conclusion This study found that 68Ga-PSMA-11 PET can be used to identify prostate cancer, while MR imaging provides detailed anatomic guidance. Hence, 68Ga-PSMA-11 PET/MR imaging provides valuable diagnostic information and may inform the need for and extent of pelvic node dissection.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oligopeptídeos / Neoplasias da Próstata / Ácido Edético / Antígeno Prostático Específico / Compostos Radiofarmacêuticos / Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada Tipo de estudo: Etiology_studies / Guideline / Prognostic_studies / Risk_factors_studies Limite: Aged / Humans / Male / Middle aged Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oligopeptídeos / Neoplasias da Próstata / Ácido Edético / Antígeno Prostático Específico / Compostos Radiofarmacêuticos / Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada Tipo de estudo: Etiology_studies / Guideline / Prognostic_studies / Risk_factors_studies Limite: Aged / Humans / Male / Middle aged Idioma: En Ano de publicação: 2018 Tipo de documento: Article