Your browser doesn't support javascript.
loading
Modeling the functions of condensin in chromosome shaping and segregation.
Sakai, Yuji; Mochizuki, Atsushi; Kinoshita, Kazuhisa; Hirano, Tatsuya; Tachikawa, Masashi.
Afiliação
  • Sakai Y; iTHES Research Group, RIKEN, Wako, Japan.
  • Mochizuki A; Theoretical Biology Laboratory, RIKEN, Wako, Japan.
  • Kinoshita K; Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Hirano T; iTHES Research Group, RIKEN, Wako, Japan.
  • Tachikawa M; Theoretical Biology Laboratory, RIKEN, Wako, Japan.
PLoS Comput Biol ; 14(6): e1006152, 2018 06.
Article em En | MEDLINE | ID: mdl-29912867
The mechanistic details underlying the assembly of rod-shaped chromosomes during mitosis and how they segregate from each other to act as individually mobile units remain largely unknown. Here, we construct a coarse-grained physical model of chromosomal DNA and condensins, a class of large protein complexes that plays key roles in these processes. We assume that condensins have two molecular activities: consecutive loop formation in DNA and inter-condensin attractions. Our simulation demonstrates that both of these activities and their balancing acts are essential for the efficient shaping and segregation of mitotic chromosomes. Our results also demonstrate that the shaping and segregation processes are strongly correlated, implying their mechanistic coupling during mitotic chromosome assembly. Our results highlight the functional importance of inter-condensin attractions in chromosome shaping and segregation.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cromossomos / Adenosina Trifosfatases / Segregação de Cromossomos / Complexos Multiproteicos / Proteínas de Ligação a DNA Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cromossomos / Adenosina Trifosfatases / Segregação de Cromossomos / Complexos Multiproteicos / Proteínas de Ligação a DNA Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article