Your browser doesn't support javascript.
loading
A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements.
Pfammatter, Sibylle; Bonneil, Eric; McManus, Francis P; Prasad, Satendra; Bailey, Derek J; Belford, Michael; Dunyach, Jean-Jacques; Thibault, Pierre.
Afiliação
  • Pfammatter S; From the ‡Institute for Research in Immunology and Cancer, H3T 1J4, Québec, Canada.
  • Bonneil E; §University of Montréal, Department of Chemistry, H3T 1J4, Québec, Canada.
  • McManus FP; From the ‡Institute for Research in Immunology and Cancer, H3T 1J4, Québec, Canada.
  • Prasad S; From the ‡Institute for Research in Immunology and Cancer, H3T 1J4, Québec, Canada.
  • Bailey DJ; ¶Thermo Fisher Scientific, San Jose, California 95134, United States.
  • Belford M; ¶Thermo Fisher Scientific, San Jose, California 95134, United States.
  • Dunyach JJ; ¶Thermo Fisher Scientific, San Jose, California 95134, United States.
  • Thibault P; ¶Thermo Fisher Scientific, San Jose, California 95134, United States.
Mol Cell Proteomics ; 17(10): 2051-2067, 2018 10.
Article em En | MEDLINE | ID: mdl-30007914
The depth of proteomic analyses is often limited by the overwhelming proportion of confounding background ions that compromise the identification and quantification of low abundance peptides. To alleviate these limitations, we present a new high field asymmetric waveform ion mobility spectrometry (FAIMS) interface that can be coupled to the Orbitrap Tribrid mass spectrometers. The interface provides several advantages over previous generations of FAIMS devices, including ease of operation, robustness, and high ion transmission. Replicate LC-FAIMS-MS/MS analyses (n = 100) of HEK293 protein digests showed stable ion current over extended time periods with uniform peptide identification on more than 10,000 distinct peptides. For complex tryptic digest analyses, the coupling of FAIMS to LC-MS/MS enabled a 30% gain in unique peptide identification compared with non-FAIMS experiments. Improvement in sensitivity facilitated the identification of low abundance peptides, and extended the limit of detection by almost an order of magnitude. The reduction in chimeric MS/MS spectra using FAIMS also improved the precision and the number of quantifiable peptides when using isobaric labeling with tandem mass tag (TMT) 10-plex reagent. We compared quantitative proteomic measurements for LC-MS/MS analyses performed using synchronous precursor selection (SPS) and LC-FAIMS-MS/MS to profile the temporal changes in protein abundance of HEK293 cells following heat shock for periods up to 9 h. FAIMS provided 2.5-fold increase in the number of quantifiable peptides compared with non-FAIMS experiments (30,848 peptides from 2,646 proteins for FAIMS versus 12,400 peptides from 1,229 proteins with SPS). Altogether, the enhancement in ion transmission and duty cycle of the new FAIMS interface extended the depth and comprehensiveness of proteomic analyses and improved the precision of quantitative measurements.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteoma / Proteômica / Espectrometria de Mobilidade Iônica Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteoma / Proteômica / Espectrometria de Mobilidade Iônica Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article