Your browser doesn't support javascript.
loading
Leishmanicidal Activity of Isoselenocyanate Derivatives.
Fernández-Rubio, Celia; Larrea, Esther; Peña Guerrero, José; Sesma Herrero, Eduardo; Gamboa, Iñigo; Berrio, Carlos; Plano, Daniel; Amin, Shantu; Sharma, Arun K; Nguewa, Paul A.
Afiliação
  • Fernández-Rubio C; Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Pamplona, Spain.
  • Larrea E; Universidad de Navarra, Department of Microbiology and Parasitology, Pamplona, Spain.
  • Peña Guerrero J; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
  • Sesma Herrero E; Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Pamplona, Spain.
  • Gamboa I; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
  • Berrio C; Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Pamplona, Spain.
  • Plano D; Universidad de Navarra, Department of Microbiology and Parasitology, Pamplona, Spain.
  • Amin S; Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Pamplona, Spain.
  • Sharma AK; Universidad de Navarra, Department of Microbiology and Parasitology, Pamplona, Spain.
  • Nguewa PA; Universidad de Navarra, Instituto de Salud Tropical (ISTUN), Pamplona, Spain.
Article em En | MEDLINE | ID: mdl-30478164
Conventional chemotherapy against leishmaniasis includes agents exhibiting considerable toxicity. In addition, reports of drug resistance are not uncommon. Thus, safe and effective therapies are urgently needed. Isoselenocyanate compounds have recently been identified with potential antitumor activity. It is well known that some antitumor agents demonstrate effects against Leishmania In this study, the in vitro leishmanicidal activities of several organo-selenium and organo-sulfur compounds were tested against Leishmania major and Leishmania amazonensis parasites, using promastigotes and intracellular amastigote forms. The cytotoxicity of these agents was measured in murine peritoneal macrophages and their selectivity indexes were calculated. One of the tested compounds, the isoselenocyanate derivative NISC-6, showed selectivity indexes 2- and 10-fold higher than those of the reference drug amphotericin B when evaluated in L. amazonensis and L. major, respectively. The American strain (L. amazonensis) was less sensitive to NISC-6 than L. major, showing a trend similar to that observed previously for amphotericin B. In addition, we also observed that NISC-6 significantly reduced the number of amastigotes per infected macrophage. On the other hand, we showed that NISC-6 decreases expression levels of Leishmania genes involved in the cell cycle, such as topoisomerase-2 (TOP-2), PCNA, and MCM4, therefore contributing to its leishmanicidal activity. The effect of this compound on cell cycle progression was confirmed by flow cytometry. We observed a significant increase of cells in the G1 phase and a dramatic reduction of cells in the S phase compared to untreated cells. Altogether, our data suggest that the isoselenocyanate NISC-6 may be a promising candidate for new drug development against leishmaniasis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos de Enxofre / Leishmania mexicana / Compostos Organosselênicos / Leishmaniose Cutânea / Leishmania major / Antiprotozoários Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos de Enxofre / Leishmania mexicana / Compostos Organosselênicos / Leishmaniose Cutânea / Leishmania major / Antiprotozoários Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article