Your browser doesn't support javascript.
loading
Carved nanoframes of cobalt-iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting.
Lian, Yuebin; Sun, Hao; Wang, Xuebin; Qi, Pengwei; Mu, Qiaoqiao; Chen, Yujie; Ye, Jing; Zhao, Xiaohui; Deng, Zhao; Peng, Yang.
Afiliação
  • Lian Y; Soochow Institute for Energy and Materials Innovations , College of Energy , Soochow University , Suzhou 215006 , P. R. China.
  • Sun H; Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , P. R. China . Email: zdeng@suda.edu.cn ; Email: ypeng@suda.edu.cn.
  • Wang X; Soochow Institute for Energy and Materials Innovations , College of Energy , Soochow University , Suzhou 215006 , P. R. China.
  • Qi P; Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , P. R. China . Email: zdeng@suda.edu.cn ; Email: ypeng@suda.edu.cn.
  • Mu Q; Soochow Institute for Energy and Materials Innovations , College of Energy , Soochow University , Suzhou 215006 , P. R. China.
  • Chen Y; Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , P. R. China . Email: zdeng@suda.edu.cn ; Email: ypeng@suda.edu.cn.
  • Ye J; Soochow Institute for Energy and Materials Innovations , College of Energy , Soochow University , Suzhou 215006 , P. R. China.
  • Zhao X; Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , P. R. China . Email: zdeng@suda.edu.cn ; Email: ypeng@suda.edu.cn.
  • Deng Z; Soochow Institute for Energy and Materials Innovations , College of Energy , Soochow University , Suzhou 215006 , P. R. China.
  • Peng Y; Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , P. R. China . Email: zdeng@suda.edu.cn ; Email: ypeng@suda.edu.cn.
Chem Sci ; 10(2): 464-474, 2019 Jan 14.
Article em En | MEDLINE | ID: mdl-30713644
ABSTRACT
Water electrolysis for hydrogen production has long been regarded as an ideal tactic for renewable energy conversion and storage, but is impeded by the sluggish kinetics of both the hydrogen and oxygen evolution reactions, which are therefore in urgent need for high-performance but low-cost electrocatalysts. Herein, nanoframes of transition metal phosphides (TMPs) with the 3D framework carved open have been demonstrated as highly potent bifunctional catalysts for overall water splitting, reaching the benchmark performance of the Pt/C‖RuO2 couple, and are much superior to their nanocubic counterparts. This excellent water splitting behavior can be attributed to the enlarged active surface area, less obstructed electrolyte infiltration, promoted charge transfer, and facilitated gas release. Further through in-depth activity analysis and post-electrocatalysis characterization, special attention has been paid to the fate and role of phosphorus in the electrocatalytic process, suggesting that despite the chemical instability of the TMPs (especially under OER conditions), excellent electrocatalytic stability can still be achieved through the amorphous bimetallic hydroxides/oxides formed in situ.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article