Your browser doesn't support javascript.
loading
Annotation of gene product function from high-throughput studies using the Gene Ontology.
Attrill, Helen; Gaudet, Pascale; Huntley, Rachael P; Lovering, Ruth C; Engel, Stacia R; Poux, Sylvain; Van Auken, Kimberly M; Georghiou, George; Chibucos, Marcus C; Berardini, Tanya Z; Wood, Valerie; Drabkin, Harold; Fey, Petra; Garmiri, Penelope; Harris, Midori A; Sawford, Tony; Reiser, Leonore; Tauber, Rebecca; Toro, Sabrina.
Afiliação
  • Attrill H; FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge , UK.
  • Gaudet P; CALIPHO group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, rue Michel Servet, CH Geneva, Switzerland.
  • Huntley RP; Institute of Cardiovascular Science, University College London, London, UK.
  • Lovering RC; Institute of Cardiovascular Science, University College London, London, UK.
  • Engel SR; Saccharomyces Genome Database, Department of Genetics, Stanford University, Porter Drive, Palo Alto, CA, USA.
  • Poux S; Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, rue Michel Servet, CH Geneva, Switzerland.
  • Van Auken KM; WormBase, Division of Biology and Biological Engineering, California Institute of Technology, E California Blvd, Pasadena, CA, USA.
  • Georghiou G; European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
  • Chibucos MC; Evidence and Conclusion Ontology, University of Maryland School of Medicine, W Baltimore St., Baltimore, MD, USA.
  • Berardini TZ; The Arabidopsis Information Resource, Phoenix Bioinformatics, Redwood City, CA, USA.
  • Wood V; PomBase, Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge, UK.
  • Drabkin H; Mouse Genome Informatics, Department of Computational Biology and Bioinformatics, The Jackson Laboratory, Main St., Bar Harbor, ME, USA.
  • Fey P; dictyBase, Biomedical Informatics Center and Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, North Lake Shore Drive, Chicago, IL, USA.
  • Garmiri P; European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
  • Harris MA; PomBase, Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge, UK.
  • Sawford T; European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
  • Reiser L; The Arabidopsis Information Resource, Phoenix Bioinformatics, Redwood City, CA, USA.
  • Tauber R; Evidence and Conclusion Ontology, University of Maryland School of Medicine, W Baltimore St., Baltimore, MD, USA.
  • Toro S; Zebrafish Information Network, University of Oregon, Eugene, OR, USA.
Database (Oxford) ; 20192019 01 01.
Article em En | MEDLINE | ID: mdl-30715275
High-throughput studies constitute an essential and valued source of information for researchers. However, high-throughput experimental workflows are often complex, with multiple data sets that may contain large numbers of false positives. The representation of high-throughput data in the Gene Ontology (GO) therefore presents a challenging annotation problem, when the overarching goal of GO curation is to provide the most precise view of a gene's role in biology. To address this, representatives from annotation teams within the GO Consortium reviewed high-throughput data annotation practices. We present an annotation framework for high-throughput studies that will facilitate good standards in GO curation and, through the use of new high-throughput evidence codes, increase the visibility of these annotations to the research community.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Genômica / Bases de Dados Genéticas / Anotação de Sequência Molecular / Ontologia Genética Tipo de estudo: Guideline Limite: Animals / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Genômica / Bases de Dados Genéticas / Anotação de Sequência Molecular / Ontologia Genética Tipo de estudo: Guideline Limite: Animals / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article