Your browser doesn't support javascript.
loading
Loss of postnatal quiescence of neural stem cells through mTOR activation upon genetic removal of cysteine string protein-α.
Nieto-González, Jose L; Gómez-Sánchez, Leonardo; Mavillard, Fabiola; Linares-Clemente, Pedro; Rivero, María C; Valenzuela-Villatoro, Marina; Muñoz-Bravo, José L; Pardal, Ricardo; Fernández-Chacón, Rafael.
Afiliação
  • Nieto-González JL; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain; jlnieto@us.es rfchacon@us.es.
  • Gómez-Sánchez L; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Sevilla, Spain.
  • Mavillard F; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas, 41013 Sevilla, Spain.
  • Linares-Clemente P; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain.
  • Rivero MC; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Sevilla, Spain.
  • Valenzuela-Villatoro M; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas, 41013 Sevilla, Spain.
  • Muñoz-Bravo JL; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain.
  • Pardal R; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Sevilla, Spain.
  • Fernández-Chacón R; Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas, 41013 Sevilla, Spain.
Proc Natl Acad Sci U S A ; 116(16): 8000-8009, 2019 04 16.
Article em En | MEDLINE | ID: mdl-30926666
ABSTRACT
Neural stem cells continuously generate newborn neurons that integrate into and modify neural circuitry in the adult hippocampus. The molecular mechanisms that regulate or perturb neural stem cell proliferation and differentiation, however, remain poorly understood. Here, we have found that mouse hippocampal radial glia-like (RGL) neural stem cells express the synaptic cochaperone cysteine string protein-α (CSP-α). Remarkably, in CSP-α knockout mice, RGL stem cells lose quiescence postnatally and enter into a high-proliferation regime that increases the production of neural intermediate progenitor cells, thereby exhausting the hippocampal neural stem cell pool. In cell culture, stem cells in hippocampal neurospheres display alterations in proliferation for which hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway is the primary cause of neurogenesis deregulation in the absence of CSP-α. In addition, RGL cells lose quiescence upon specific conditional targeting of CSP-α in adult neural stem cells. Our findings demonstrate an unanticipated cell-autonomic and circuit-independent disruption of postnatal neurogenesis in the absence of CSP-α and highlight a direct or indirect CSP-α/mTOR signaling interaction that may underlie molecular mechanisms of brain dysfunction and neurodegeneration.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Choque Térmico HSP40 / Células-Tronco Neurais / Serina-Treonina Quinases TOR / Proteínas de Membrana Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Choque Térmico HSP40 / Células-Tronco Neurais / Serina-Treonina Quinases TOR / Proteínas de Membrana Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article