Your browser doesn't support javascript.
loading
Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte.
Xu, Guanghui; Cao, Jingjing; Wang, Xufeng; Chen, Qiuyue; Jin, Weiwei; Li, Zhen; Tian, Feng.
Afiliação
  • Xu G; State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural Universit
  • Cao J; State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural Universit
  • Wang X; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
  • Chen Q; State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural Universit
  • Jin W; State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural Universit
  • Li Z; State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural Universit
  • Tian F; State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural Universit
Plant Cell ; 31(9): 1990-2009, 2019 09.
Article em En | MEDLINE | ID: mdl-31227559
ABSTRACT
Maize (Zea mays subsp mays) was domesticated from its wild ancestor, teosinte (Zea mays subsp parviglumis). Maize's distinct morphology and adaptation to diverse environments required coordinated changes in various metabolic pathways. However, how the metabolome was reshaped since domestication remains poorly understood. Here, we report a comprehensive assessment of divergence in the seedling metabolome between maize and teosinte. In total, 461 metabolites exhibited significant divergence due to selection. Interestingly, teosinte and tropical and temperate maize, representing major stages of maize evolution, targeted distinct sets of metabolites. Alkaloids, terpenoids, and lipids were specifically targeted in the divergence between teosinte and tropical maize, while benzoxazinoids were specifically targeted in the divergence between tropical and temperate maize. To identify genetic factors controlling metabolic divergence, we assayed the seedling metabolome of a large maize-by-teosinte cross population. We show that the recent metabolic divergence between tropical and temperate maize tended to have simpler genetic architecture than the divergence between teosinte and tropical maize. Through integrating transcriptome data, we identified candidate genes contributing to metabolic divergence, many of which were under selection at the nucleotide and transcript levels. Through overexpression or mutant analysis, we verified the roles of Flavanone 3-hydroxylase1, Purple aleurone1, and maize terpene synthase1 in the divergence of their related biosynthesis pathways. Our findings not only provide important insights into domestication-associated changes in the metabolism but also highlight the power of combining omics data for trait dissection.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zea mays / Evolução Biológica / Metabolômica / Domesticação Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zea mays / Evolução Biológica / Metabolômica / Domesticação Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article