Your browser doesn't support javascript.
loading
Liquid-phase exfoliated SnS as a semiconductor coating filler to enhance corrosion protection performance.
Tang, Hongyu; Qu, Zuopeng; Wang, Lei; Ye, Huaiyu; Fan, Xuejun; Zhang, Guoqi.
Afiliação
  • Tang H; Department of Microelectronics, Faculty of Electronic, Mathematics and Information, Delft University of Technology, Delft 2628 CT, The Netherlands. G.Q.Zhang@tudelft.nl and Changzhou Institute of Technology Research for Solid State Lighting, Changzhou, 213161, China.
  • Qu Z; School of Renewable Energy, North China Electric Power University, Beijing, 102206, China. z.qu@ncepu.edu.cn.
  • Wang L; School of Renewable Energy, North China Electric Power University, Beijing, 102206, China. z.qu@ncepu.edu.cn.
  • Ye H; School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China. yehy@sustech.edu.cn and Shenzhen Institute of Wide-bandgap Semiconductors, Shenzhen 518055, Guangdong, China.
  • Fan X; Department of Mechanical Engineering, Lamar University, Beaumont, TX, USA.
  • Zhang G; Department of Microelectronics, Faculty of Electronic, Mathematics and Information, Delft University of Technology, Delft 2628 CT, The Netherlands. G.Q.Zhang@tudelft.nl.
Phys Chem Chem Phys ; 21(33): 18179-18187, 2019 Aug 21.
Article em En | MEDLINE | ID: mdl-31389439
ABSTRACT
This paper presents the anti-corrosion application of polyvinylbutyral/tin sulfide (PVB/SnS) composites for the first time, where the liquid-phase exfoliated (LPE) SnS nanosheets are uniformly embedded in the PVB matrix. The measurement results of the potentiodynamic polarization, the electrochemical impedance spectroscopy (EIS) and the scanning electronic microscopy (SEM) show that PVB/SnS composite coatings show the excellent corrosion protection behavior for copper under 3.0% NaCl solution. Besides, we investigated the anti-corrosion performance with different contents of SnS nanosheets. The results show that embedding 0.1 wt% SnS nanosheets in the PVB matrix can greatly improve the anti-corrosion properties of the coating due to the enhanced "Labyrinth effect" of the coatings. In addition, the results of the molecular dynamic analysis further show the high interaction energy between PVB/SnS composites and copper, which is attributed to the high aspect-ratio of LPE-SnS nanosheets. Moreover, the scratch tests reveal that the PVB/SnS composite coatings exhibit weak corrosion-promotion activity, indicating a promising potential application in the corrosion protection of the metal surface for ocean engineering. The methods for enhancing the inhibited corrosion-promotion activity of the semiconductor material SnS-based composite coatings could be expanded to other n-type and p-type semiconductors.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article