Your browser doesn't support javascript.
loading
Building an automatic pollen monitoring network (ePIN): Selection of optimal sites by clustering pollen stations.
Oteros, Jose; Sofiev, Mikhail; Smith, Matt; Clot, Bernard; Damialis, Athanasios; Prank, Marje; Werchan, Matthias; Wachter, Reinhard; Weber, Alisa; Kutzora, Susanne; Heinze, Stefanie; Herr, Caroline E W; Menzel, Annette; Bergmann, Karl-Christian; Traidl-Hoffmann, Claudia; Schmidt-Weber, Carsten B; Buters, Jeroen T M.
Afiliação
  • Oteros J; Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany.
  • Sofiev M; Finnish Meteorological Institute (FMI), Helsinki, Finland.
  • Smith M; School of Science and the Environment, University of Worcester, UK.
  • Clot B; Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, Switzerland.
  • Damialis A; Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum M., Augsburg, Germany.
  • Prank M; Finnish Meteorological Institute (FMI), Helsinki, Finland.
  • Werchan M; Foundation German Pollen Information Service (PID), Berlin, Germany.
  • Wachter R; Foundation German Pollen Information Service (PID), Berlin, Germany.
  • Weber A; Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Munich, Germany.
  • Kutzora S; Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Munich, Germany.
  • Heinze S; Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Munich, Germany.
  • Herr CEW; Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Munich, Germany.
  • Menzel A; Technische Universität München, Ecoclimatology, Department of Ecology and Ecosystem Management, Freising, Germany; Technische Universität München, Institute for Advanced Study, Garching, Germany.
  • Bergmann KC; Foundation German Pollen Information Service (PID), Berlin, Germany.
  • Traidl-Hoffmann C; Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum M., Augsburg, Germany; Christine Kühne Center for Allergy Research and Education (CK Care), Davos, Switzerland.
  • Schmidt-Weber CB; Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany.
  • Buters JTM; Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany. Electronic address: Buters@tum.de.
Sci Total Environ ; 688: 1263-1274, 2019 Oct 20.
Article em En | MEDLINE | ID: mdl-31726556
Airborne pollen is a recognized biological indicator and its monitoring has multiple uses such as providing a tool for allergy diagnosis and prevention. There is a knowledge gap related to the distribution of pollen traps needed to achieve representative biomonitoring in a region. The aim of this manuscript is to suggest a method for setting up a pollen network (monitoring method, monitoring conditions, number and location of samplers etc.). As a case study, we describe the distribution of pollen across Bavaria and the design of the Bavarian pollen monitoring network (ePIN), the first operational automatic pollen network worldwide. We established and ran a dense pollen monitoring network of 27 manual Hirst-type pollen traps across Bavaria, Germany, during 2015. Hierarchical cluster analysis of the data was then performed to select the locations for the sites of the final pollen monitoring network. According to our method, Bavaria can be clustered into three large pollen regions with eight zones. Within each zone, pollen diversity and distribution among different locations does not vary significantly. Based on the pollen zones, we opted to place one automatic monitoring station per zone resulting in the ePIN network, serving 13 million inhabitants. The described method defines stations representative for a homogeneous aeropalynologically region, which reduces redundancy within the network and subsequent costs (in the study case from 27 to 8 locations). Following this method, resources in pollen monitoring networks can be optimized and allergic citizens can then be informed in a timely and effective way, even in larger geographical areas.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pólen / Alérgenos / Monitoramento Ambiental / Poluentes Atmosféricos Tipo de estudo: Guideline País/Região como assunto: Europa Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pólen / Alérgenos / Monitoramento Ambiental / Poluentes Atmosféricos Tipo de estudo: Guideline País/Região como assunto: Europa Idioma: En Ano de publicação: 2019 Tipo de documento: Article