Your browser doesn't support javascript.
loading
Nonlinear Dark-Field Imaging of One-Dimensional Defects in Monolayer Dichalcogenides.
Carvalho, Bruno R; Wang, Yuanxi; Fujisawa, Kazunori; Zhang, Tianyi; Kahn, Ethan; Bilgin, Ismail; Ajayan, Pulickel M; de Paula, Ana M; Pimenta, Marcos A; Kar, Swastik; Crespi, Vincent H; Terrones, Mauricio; Malard, Leandro M.
Afiliação
  • Carvalho BR; Departamento de Física , Universidade Federal do Rio Grande do Norte , Natal , Rio Grande do Norte 59078-970 , Brazil.
  • Bilgin I; Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States.
  • Ajayan PM; Department of Material Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States.
  • de Paula AM; Departamento de Física , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais 30123-970 , Brazil.
  • Pimenta MA; Departamento de Física , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais 30123-970 , Brazil.
  • Kar S; Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States.
  • Malard LM; Departamento de Física , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais 30123-970 , Brazil.
Nano Lett ; 20(1): 284-291, 2020 Jan 08.
Article em En | MEDLINE | ID: mdl-31794217
One-dimensional defects in two-dimensional (2D) materials can be particularly damaging because they directly impede the transport of charge, spin, or heat and can introduce a metallic character into otherwise semiconducting systems. Current characterization techniques suffer from low throughput and a destructive nature or limitations in their unambiguous sensitivity at the nanoscale. Here we demonstrate that dark-field second harmonic generation (SHG) microscopy can rapidly, efficiently, and nondestructively probe grain boundaries and edges in monolayer dichalcogenides (i.e., MoSe2, MoS2, and WS2). Dark-field SHG efficiently separates the spatial components of the emitted light and exploits interference effects from crystal domains of different orientations to localize grain boundaries and edges as very bright 1D patterns through a Cerenkov-type SHG emission. The frequency dependence of this emission in MoSe2 monolayers is explained in terms of plasmon-enhanced SHG related to the defect's metallic character. This new technique for nanometer-scale imaging of the grain structure, domain orientation and localized 1D plasmons in 2D different semiconductors, thus enables more rapid progress toward both applications and fundamental materials discoveries.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article