Your browser doesn't support javascript.
loading
Evolution Pathway from Iron Compounds to Fe1(II)-N4 Sites through Gas-Phase Iron during Pyrolysis.
Li, Jingkun; Jiao, Li; Wegener, Evan; Richard, Lynne Larochelle; Liu, Ershuai; Zitolo, Andrea; Sougrati, Moulay Tahar; Mukerjee, Sanjeev; Zhao, Zipeng; Huang, Yu; Yang, Fan; Zhong, Sichen; Xu, Hui; Kropf, A Jeremy; Jaouen, Frédéric; Myers, Deborah J; Jia, Qingying.
Afiliação
  • Li J; Institut Charles Gerhardt Montpellier, UMR 5253, CNRS , Université Montpellier, ENSCM , Place Eugène Bataillon , 34095 Montpellier cedex 5 , France.
  • Wegener E; Chemical Sciences and Engineering Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States.
  • Zitolo A; Synchrotron SOLEIL, L'orme des Merisiers , BP 48 Saint Aubin , 91192 Gif-sur-Yvette , France.
  • Sougrati MT; Institut Charles Gerhardt Montpellier, UMR 5253, CNRS , Université Montpellier, ENSCM , Place Eugène Bataillon , 34095 Montpellier cedex 5 , France.
  • Yang F; Giner, Incorporated , Newton , Massachusetts 02466 , United States.
  • Zhong S; Giner, Incorporated , Newton , Massachusetts 02466 , United States.
  • Xu H; Giner, Incorporated , Newton , Massachusetts 02466 , United States.
  • Kropf AJ; Chemical Sciences and Engineering Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States.
  • Jaouen F; Institut Charles Gerhardt Montpellier, UMR 5253, CNRS , Université Montpellier, ENSCM , Place Eugène Bataillon , 34095 Montpellier cedex 5 , France.
  • Myers DJ; Chemical Sciences and Engineering Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States.
J Am Chem Soc ; 142(3): 1417-1423, 2020 Jan 22.
Article em En | MEDLINE | ID: mdl-31880925
ABSTRACT
Pyrolysis is indispensable for synthesizing highly active Fe-N-C catalysts for the oxygen reduction reaction (ORR) in acid, but how Fe, N, and C precursors transform to ORR-active sites during pyrolysis remains unclear. This knowledge gap obscures the connections between the input precursors and the output products, clouding the pathway toward Fe-N-C catalyst improvement. Herein, we unravel the evolution pathway of precursors to ORR-active catalyst comprised exclusively of single-atom Fe1(II)-N4 sites via in-temperature X-ray absorption spectroscopy. The Fe precursor transforms to Fe oxides below 300 °C and then to tetrahedral Fe1(II)-O4 via a crystal-to-melt-like transformation below 600 °C. The Fe1(II)-O4 releases a single Fe atom that diffuses into the N-doped carbon defect forming Fe1(II)-N4 above 600 °C. This vapor-phase single Fe atom transport mechanism is verified by synthesizing Fe1(II)-N4 sites via "noncontact pyrolysis" wherein the Fe precursor is not in physical contact with the N and C precursors during pyrolysis.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article