Your browser doesn't support javascript.
loading
Cell trapping microfluidic chip made of Cyclo olefin polymer enabling two concurrent cell biology experiments with long term durability.
Gencturk, Elif; Yurdakul, Ekin; Celik, Ahmet Yasin; Mutlu, Senol; Ulgen, Kutlu O.
Afiliação
  • Gencturk E; Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342, Istanbul, Turkey.
  • Yurdakul E; Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342, Istanbul, Turkey.
  • Celik AY; Department of Electrical and Electronics Engineering, BUMEMS Laboratory, Bogazici University, 34342, Istanbul, Turkey.
  • Mutlu S; Department of Electrical and Electronics Engineering, BUMEMS Laboratory, Bogazici University, 34342, Istanbul, Turkey.
  • Ulgen KO; Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342, Istanbul, Turkey. ulgenk@boun.edu.tr.
Biomed Microdevices ; 22(1): 20, 2020 02 20.
Article em En | MEDLINE | ID: mdl-32078073
ABSTRACT
Cyclo Olefin Polymer (COP) based microbioreactors on a microfluidic chip were produced in house by hot-embossing and thermo-compression bonding methods. The chip allows two different experiments to be performed on trapped cells at the same time. On one side of the chip, red fluorescent protein (RFP) tagged nucleolar Nop56 protein was used to track changes in cell cycle as well as protein synthesis within the yeast cells under the application of the anti-tumor agent hydroxyurea (HU). Simultaneously, on the other side of the chip, the response of yeast cells to the drug metformin, mTOR inhibitor, was investigated to reveal the role of TOR signaling in ribosome biogenesis and cell proliferation. The results of 20 h long experiments are captured by taking brightfield and fluorescent microscopy images of the trapped cells every 9 min. The expression of Nop56 protein of ribosome assembly and synthesis was densely observed during G1 phase of cell cycle, and later towards the end of cell cycle the ribosomal protein expression slowed down. Under HU treatment, the morphology of yeast cells changed, but after cessation of HU, the biomass synthesis rate was sustained as monitored by the cell perimeter. Under metformin treatment, the perimeters of single cells were observed to decrease, implying a decrease in biomass growth; however these cells continued their proliferation during and after the drug application. The relation between ribosome biogenesis and cell cycle was successfully investigated on single cell basis, capturing cell-to-cell variations, which cannot be tracked by regular macroscale bioreactors.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Cicloparafinas / Dispositivos Lab-On-A-Chip / Análise de Célula Única Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Cicloparafinas / Dispositivos Lab-On-A-Chip / Análise de Célula Única Idioma: En Ano de publicação: 2020 Tipo de documento: Article