Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis.
Neuroimage
; 213: 116690, 2020 06.
Article
em En
| MEDLINE
| ID: mdl-32119987
BACKGROUND: Previous histopathology and MRI studies have addressed the differences between focal white matter lesions (FWML) and diffusely abnormal white matter (DAWM) in multiple sclerosis (MS). These two categories of white matter T2-weighted (T2w) hyperintensity show different degrees of demyelination, axonal loss and immune cell density on histopathology, potentially offering distinct correlations with symptoms. OBJECTIVES: 1) To automate the separation of FWML and DAWM using T2w MRI intensity thresholds and to investigate their differences in magnetization transfer ratios (MTR), which are sensitive to myelin content; 2) to correlate MTR values in FWML and DAWM with normalized signal intensity values on fluid attenuated inversion recovery (FLAIR), T2w, and T1-weighted (T1w) contrasts, as well as with the ratio of T2w/T1w normalized values, in order to determine whether these normalized intensities can be used when MTR is not available. METHODS: We used three MRI datasets: datasets 1 and 2 had 20 MS participants each, scanned with similar 3T MRI protocols in 2 centers, including: 3D T1w (MP2RAGE), 3D FLAIR, 2D T2w, and 3D magnetization-transfer (MT) contrasts. Dataset 3 consisted of 67 scans of participants enrolled in a multisite study and had T1w and T2w contrasts. We used the first dataset to develop an automated technique to separate FWML from DAWM and the second and third to validate the automation of the technique. We applied the automatic thresholds to all datasets to assess the overlap of the manual and the automated masks using Dice kappa. We also assessed differences in mean MTR values between NAWM, DAWM and FWML, using manually and automatically derived masks in datasets 1 and 2. Finally, we used the mean intensity of manually-traced areas of NAWM on T2w images as the normalization factor for each MRI contrast, and compared these with the normalized-intensity values obtained using automated NAWM (A-NAWM) masks as the normalization factor. ANOVA assessed the MTR differences across tissue types. Paired t-test or Wilcoxon signed-ranked test assessed FWML and DAWM differences between manual and automatically derived volumes. Pearson correlations assessed the relationship between MTR and normalized intensity values in the manual and automatically derived masks. RESULTS: The mean Dice-kappa values for dataset 1 were: 0.79 for DAWM masks and 0.90 for FWML masks. In dataset 2, mean Dice-kappa values were: 0.78 for DAWM and 0.87 for FWML. In dataset 3, mean Dice-kappa values were 0.72 for DAWM, and 0.87 for FWML. Manual and automated DAWM and FWML volumes were not significantly different in all datasets. MTR values were significantly lower in manually and automatically derived FWML compared with DAWM in both datasets (dataset 1 manual: F â= â111,08, p â< â0.0001; automated: F â= â153.90, p â< â0.0001; dataset 2 manual: F â= â31.25, p â< â0.0001; automated: F â= â74.04, p â< â0.0001). In both datasets, manually derived FWML and DAWM MTR values showed significant correlations with normalized T1w (r â= â0.77 to 0.94) intensities. CONCLUSIONS: The separation of FWML and DAWM on MRI scans of MS patients using automated intensity thresholds on T2w images is feasible. MTR values are significantly lower in FWML than DAWM, and DAWM values are significantly lower than NAWM, reflecting potentially greater demyelination within focal lesions. T1w normalized intensity values exhibit a significant correlation with MTR values in both tissues of interest and could be used as a proxy to assess demyelination when MTR or other myelin-sensitive images are not available.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Encéfalo
/
Imageamento por Ressonância Magnética
/
Interpretação de Imagem Assistida por Computador
/
Substância Branca
/
Esclerose Múltipla
Limite:
Adult
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article