Your browser doesn't support javascript.
loading
Deep Phenotyping by Mass Cytometry and Single-Cell RNA-Sequencing Reveals LYN-Regulated Signaling Profiles Underlying Monocyte Subset Heterogeneity and Lifespan.
Roberts, Morgan E; Barvalia, Maunish; Silva, Jessica A F D; Cederberg, Rachel A; Chu, William; Wong, Amanda; Tai, Daven C; Chen, Sam; Matos, Israel; Priatel, John J; Cullis, Pieter R; Harder, Kenneth W.
Afiliação
  • Roberts ME; From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada.
  • Barvalia M; From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada.
  • Silva JAFD; From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada.
  • Cederberg RA; From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada.
  • Chu W; From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada.
  • Wong A; From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada.
  • Tai DC; Department of Pediatrics (D.C.T.), University of British Columbia, Vancouver, Canada.
  • Chen S; British Columbia Children's Hospital Research Institute, Vancouver, Canada (D.C.T., J.J.P.).
  • Matos I; Department of Biochemistry and Molecular Biology (S.C., P.R.C.), University of British Columbia, Vancouver, Canada.
  • Priatel JJ; From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada.
  • Cullis PR; Department of Pathology and Laboratory Medicine (J.J.P.), University of British Columbia, Vancouver, Canada.
  • Harder KW; British Columbia Children's Hospital Research Institute, Vancouver, Canada (D.C.T., J.J.P.).
Circ Res ; 126(10): e61-e79, 2020 05 08.
Article em En | MEDLINE | ID: mdl-32151196
ABSTRACT
RATIONALE Monocytes are key effectors of the mononuclear phagocyte system, playing critical roles in regulating tissue homeostasis and coordinating inflammatory reactions, including those involved in chronic inflammatory diseases such as atherosclerosis. Monocytes have traditionally been divided into 2 major subsets termed conventional monocytes and patrolling monocytes (pMo) but recent systems immunology approaches have identified marked heterogeneity within these cells, and much of what regulates monocyte population homeostasis remains unknown. We and others have previously identified LYN tyrosine kinase as a key negative regulator of myeloid cell biology; however, LYN's role in regulating specific monocyte subset homeostasis has not been investigated.

OBJECTIVE:

We sought to comprehensively profile monocytes to elucidate the underlying heterogeneity within monocytes and dissect how Lyn deficiency affects monocyte subset composition, signaling, and gene expression. We further tested the biological significance of these findings in a model of atherosclerosis. METHODS AND

RESULTS:

Mass cytometric analysis of monocyte subsets and signaling pathway activation patterns in conventional monocytes and pMos revealed distinct baseline signaling profiles and far greater heterogeneity than previously described. Lyn deficiency led to a selective expansion of pMos and alterations in specific signaling pathways within these cells, revealing a critical role for LYN in pMo physiology. LYN's role in regulating pMos was cell-intrinsic and correlated with an increased circulating half-life of Lyn-deficient pMos. Furthermore, single-cell RNA sequencing revealed marked perturbations in the gene expression profiles of Lyn-/- monocytes with upregulation of genes involved in pMo development, survival, and function. Lyn deficiency also led to a significant increase in aorta-associated pMos and protected Ldlr-/- mice from high-fat diet-induced atherosclerosis.

CONCLUSIONS:

Together our data identify LYN as a key regulator of pMo development and a potential therapeutic target in inflammatory diseases regulated by pMos.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Monócitos / Transdução de Sinais / Heterogeneidade Genética / Quinases da Família src / Aterosclerose / Análise de Célula Única / Transcriptoma / Citometria de Fluxo / RNA-Seq Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Monócitos / Transdução de Sinais / Heterogeneidade Genética / Quinases da Família src / Aterosclerose / Análise de Célula Única / Transcriptoma / Citometria de Fluxo / RNA-Seq Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article