Your browser doesn't support javascript.
loading
Experimental realisation of tunable ferroelectric/superconductor [Formula: see text] 1D photonic crystals in the whole visible spectrum.
González, Luz E; Ordoñez, John E; Melo-Luna, Carlos A; Mendoza, Evelyn; Reyes, David; Zambrano, Gustavo; Porras-Montenegro, Nelson; Granada, Juan C; Gómez, Maria E; Reina, John H.
Afiliação
  • González LE; Centre for Bioinformatics and Photonics (CIBioFi), Universidad del Valle, Edificio E20 No. 1069, 760032, Cali, Colombia.
  • Ordoñez JE; Solid State Theoretical Physics Group, Departamento de Física, Universidad del Valle, 760032, Cali, Colombia.
  • Melo-Luna CA; Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, 730001, Ibagué, Colombia.
  • Mendoza E; Thin Films Group, Departamento de Física, Universidad del Valle, 760032, Cali, Colombia.
  • Reyes D; Centre for Bioinformatics and Photonics (CIBioFi), Universidad del Valle, Edificio E20 No. 1069, 760032, Cali, Colombia.
  • Zambrano G; Quantum Technologies, Information and Complexity Group, Departamento de Física, Universidad del Valle, 760032, Cali, Colombia.
  • Porras-Montenegro N; Thin Films Group, Departamento de Física, Universidad del Valle, 760032, Cali, Colombia.
  • Granada JC; Centre d'Élaboration de Matériaux et d'Etudes Structurales (CEMES) CNRS-UPR 8011, 29 Rue Jeanne Marvig, 31055, Toulouse, France.
  • Gómez ME; Thin Films Group, Departamento de Física, Universidad del Valle, 760032, Cali, Colombia.
  • Reina JH; Centre for Bioinformatics and Photonics (CIBioFi), Universidad del Valle, Edificio E20 No. 1069, 760032, Cali, Colombia.
Sci Rep ; 10(1): 13083, 2020 Aug 04.
Article em En | MEDLINE | ID: mdl-32753626
ABSTRACT
Emergent technologies that make use of novel materials and quantum properties of light states are at the forefront in the race for the physical implementation, encoding and transmission of information. Photonic crystals (PCs) enter this paradigm with optical materials that allow the control of light propagation and can be used for optical communication, and photonics and electronics integration, making use of materials ranging from semiconductors, to metals, metamaterials, and topological insulators, to mention but a few. Here, we show how designer superconductor materials integrated into PCs fabrication allow for an extraordinary reduction of electromagnetic waves damping, making possible their optimal propagation and tuning through the structure, below critical superconductor temperature. We experimentally demonstrate, for the first time, a successful integration of ferroelectric and superconductor materials into a one-dimensional (1D) PC composed of [Formula see text] bilayers that work in the whole visible spectrum, and below (and above) critical superconductor temperature [Formula see text]. Theoretical calculations support, for different number of bilayers N, the effectiveness of the produced 1D PCs and may pave the way for novel optoelectronics integration and information processing in the visible spectrum, while preserving their electric and optical properties.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article