Your browser doesn't support javascript.
loading
Purifying Selection against Pathogenic Mitochondrial DNA in Human T Cells.
Walker, Melissa A; Lareau, Caleb A; Ludwig, Leif S; Karaa, Amel; Sankaran, Vijay G; Regev, Aviv; Mootha, Vamsi K.
Afiliação
  • Walker MA; From the Departments of Molecular Biology (M.A.W., V.K.M.), Neurology (M.A.W.), and Medicine (V.K.M) and the Genetics Unit, Department of Pediatrics (A.K.), Massachusetts General Hospital, Howard Hughes Medical Institute (M.A.W., A.R., V.K.M.), the Division of Hematology-Oncology, Boston Children's
  • Lareau CA; From the Departments of Molecular Biology (M.A.W., V.K.M.), Neurology (M.A.W.), and Medicine (V.K.M) and the Genetics Unit, Department of Pediatrics (A.K.), Massachusetts General Hospital, Howard Hughes Medical Institute (M.A.W., A.R., V.K.M.), the Division of Hematology-Oncology, Boston Children's
  • Ludwig LS; From the Departments of Molecular Biology (M.A.W., V.K.M.), Neurology (M.A.W.), and Medicine (V.K.M) and the Genetics Unit, Department of Pediatrics (A.K.), Massachusetts General Hospital, Howard Hughes Medical Institute (M.A.W., A.R., V.K.M.), the Division of Hematology-Oncology, Boston Children's
  • Karaa A; From the Departments of Molecular Biology (M.A.W., V.K.M.), Neurology (M.A.W.), and Medicine (V.K.M) and the Genetics Unit, Department of Pediatrics (A.K.), Massachusetts General Hospital, Howard Hughes Medical Institute (M.A.W., A.R., V.K.M.), the Division of Hematology-Oncology, Boston Children's
  • Sankaran VG; From the Departments of Molecular Biology (M.A.W., V.K.M.), Neurology (M.A.W.), and Medicine (V.K.M) and the Genetics Unit, Department of Pediatrics (A.K.), Massachusetts General Hospital, Howard Hughes Medical Institute (M.A.W., A.R., V.K.M.), the Division of Hematology-Oncology, Boston Children's
  • Regev A; From the Departments of Molecular Biology (M.A.W., V.K.M.), Neurology (M.A.W.), and Medicine (V.K.M) and the Genetics Unit, Department of Pediatrics (A.K.), Massachusetts General Hospital, Howard Hughes Medical Institute (M.A.W., A.R., V.K.M.), the Division of Hematology-Oncology, Boston Children's
  • Mootha VK; From the Departments of Molecular Biology (M.A.W., V.K.M.), Neurology (M.A.W.), and Medicine (V.K.M) and the Genetics Unit, Department of Pediatrics (A.K.), Massachusetts General Hospital, Howard Hughes Medical Institute (M.A.W., A.R., V.K.M.), the Division of Hematology-Oncology, Boston Children's
N Engl J Med ; 383(16): 1556-1563, 2020 10 15.
Article em En | MEDLINE | ID: mdl-32786181
ABSTRACT
Many mitochondrial diseases are caused by mutations in mitochondrial DNA (mtDNA). Patients' cells contain a mixture of mutant and nonmutant mtDNA (a phenomenon called heteroplasmy). The proportion of mutant mtDNA varies across patients and among tissues within a patient. We simultaneously assayed single-cell heteroplasmy and cell state in thousands of blood cells obtained from three unrelated patients who had A3243G-associated mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes. We observed a broad range of heteroplasmy across all cell types but also found markedly reduced heteroplasmy in T cells, a finding consistent with purifying selection within this lineage. We observed this pattern in six additional patients who had heteroplasmic A3243G without strokelike episodes. (Funded by the Marriott Foundation and others.).
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polimorfismo Genético / DNA Mitocondrial / Linfócitos T / Mutação Limite: Adult / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polimorfismo Genético / DNA Mitocondrial / Linfócitos T / Mutação Limite: Adult / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article