Your browser doesn't support javascript.
loading
Axially and Helically Chiral Cationic Radical Bicarbazoles: SOMO-HOMO Level Inversion and Chirality Impact on the Stability of Mono- and Diradical Cations.
Kasemthaveechok, Sitthichok; Abella, Laura; Jean, Marion; Cordier, Marie; Roisnel, Thierry; Vanthuyne, Nicolas; Guizouarn, Thierry; Cador, Olivier; Autschbach, Jochen; Crassous, Jeanne; Favereau, Ludovic.
Afiliação
  • Kasemthaveechok S; Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
  • Abella L; Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.
  • Jean M; Aix Marseille University, CNRS Centrale Marseille, iSm2, Marseille 13284, France.
  • Cordier M; Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
  • Roisnel T; Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
  • Vanthuyne N; Aix Marseille University, CNRS Centrale Marseille, iSm2, Marseille 13284, France.
  • Guizouarn T; Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
  • Cador O; Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
  • Autschbach J; Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.
  • Crassous J; Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
  • Favereau L; Université Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France.
J Am Chem Soc ; 2020 Nov 17.
Article em En | MEDLINE | ID: mdl-33201694
ABSTRACT
We report persistent chiral organic mono- and diradical cations based on bicarbazole molecular design with an unprecedented stability dependence on the type of chirality, namely, axial versus helical. An unusual chemical stability was observed for sterically unprotected axial bicarbazole radical in comparison with monocarbazole and helical bicarbazole ones. Such results were experimentally and theoretically investigated, revealing an inversion in energy of the singly occupied molecular orbital (SOMO) and the highest (doubly) occupied molecular orbital (HOMO) in both axial and helical bicarbazole monoradicals along with a subtle difference of electronic coupling between the two carbazole units, which is modulated by their relative dihedral angle and related to the type of chirality. Such findings allowed us to explore in depth the SOMO-HOMO inversion (SHI) in chiral radical molecular systems and provide new insights regarding its impact on the stability of organic radicals. Finally, these specific electronic properties allowed us to prepare a persistent, intrinsically chiral, diradical which notably displayed near-infrared electronic circular dichroism responses up to 1100 nm and almost degenerate singlet-triplet ground states with weak antiferromagnetic interactions evaluated by magnetometry experiments.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article