Your browser doesn't support javascript.
loading
Elucidating the impacts of intermittent in-situ ozonation in a ceramic membrane bioreactor: Micropollutant removal, microbial community evolution and fouling mechanisms.
Asif, Muhammad Bilal; Li, Chengyue; Ren, Baoyu; Maqbool, Tahir; Zhang, Xihui; Zhang, Zhenghua.
Afiliação
  • Asif MB; Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International
  • Li C; Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International
  • Ren B; Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International
  • Maqbool T; Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International
  • Zhang X; Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International
  • Zhang Z; Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International
J Hazard Mater ; 402: 123730, 2021 01 15.
Article em En | MEDLINE | ID: mdl-33254762
In this study, impacts of in-situ ozonation applied directly in the membrane tank of a ceramic MBR (Oz-MBR) were assessed to elucidate its implications on micropollutant removal, microbial taxa and membrane fouling. The basic effluent quality (i.e., bulk organics and nutrients) of the MBR without and with in-situ ozonation was comparable. Importantly, pollutant-specific (10-26%) improvement in micropollutant removal was achieved by the Oz-MBR, which could be attributed to the increase in the abundance of microbial taxa responsible for the removal of structurally complex pollutants and/or ozone-assisted oxidation. In-situ ozonation affected the abundance of denitrifying bacteria and functional genes but total nitrogen removal by the Oz-MBR was comparable to that achieved by the control (C)-MBR. Improved mixed liquor properties, and the reduced accumulation of foulants on the membrane surface resulted in membrane fouling alleviation (53%) in the Oz-MBR. In addition, fouling models evaluated for the first time in the case of Oz-MBR indicated that the cake-complete model was suitable to explain membrane fouling mechanism. This comprehensive study demonstrates the performance of MBR coupled with in-situ ozonation, and the obtained results would serve as a useful reference for its implementation at pilot- and/or full-scale.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ozônio / Microbiota Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ozônio / Microbiota Idioma: En Ano de publicação: 2021 Tipo de documento: Article