Your browser doesn't support javascript.
loading
Efficient multiplexed genome engineering with a polycistronic tRNA and CRISPR guide-RNA reveals an important role of detonator in reproduction of Drosophila melanogaster.
Chon, Cristin; Chon, Grace; Matsui, Yurika; Zeng, Huiqing; Lai, Zhi-Chun; Liu, Aimin.
Afiliação
  • Chon C; Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America.
  • Chon G; Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America.
  • Matsui Y; Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America.
  • Zeng H; Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America.
  • Lai ZC; Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America.
  • Liu A; Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America.
PLoS One ; 16(1): e0245454, 2021.
Article em En | MEDLINE | ID: mdl-33444382
ABSTRACT
Genome association studies in human and genetic studies in mouse implicated members of the transmembrane protein 132 (TMEM132) family in multiple conditions including panic disorder, hearing loss, limb and kidney malformation. However, the presence of five TMEM132 paralogs in mammalian genomes makes it extremely challenging to reveal the full requirement for these proteins in vivo. In contrast, there is only one TMEM132 homolog, detonator (dtn), in the genome of fruit fly Drosophila melanogaster, enabling straightforward research into its in vivo function. In the current study, we generate multiple loss-of-function dtn mutant fly strains through a polycistronic tRNA-gRNA approach, and show that most embryos lacking both maternal and paternal dtn fail to hatch into larvae, indicating an essential role of dtn in Drosophila reproduction.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: RNA de Transferência / RNA Guia de Cinetoplastídeos / Drosophila melanogaster / Sistemas CRISPR-Cas / Edição de Genes Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: RNA de Transferência / RNA Guia de Cinetoplastídeos / Drosophila melanogaster / Sistemas CRISPR-Cas / Edição de Genes Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article