Understanding Exposure-Receptor Occupancy Relationships for Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators across a Range of Preclinical and Clinical Studies.
J Pharmacol Exp Ther
; 377(1): 157-168, 2021 04.
Article
em En
| MEDLINE
| ID: mdl-33541889
The metabotropic glutamate receptor 5 (mGlu5) is a recognized central nervous system therapeutic target for which several negative allosteric modulator (NAM) drug candidates have or are continuing to be investigated for various disease indications in clinical development. Direct measurement of target receptor occupancy (RO) is extremely useful to help design and interpret efficacy and safety in nonclinical and clinical studies. In the mGlu5 field, this has been successfully achieved by monitoring displacement of radiolabeled ligands, specifically binding to the mGlu5 receptor, in the presence of an mGlu5 NAM using in vivo and ex vivo binding in rodents and positron emission tomography imaging in cynomolgus monkeys and humans. The aim of this study was to measure the RO of the mGlu5 NAM HTL0014242 in rodents and cynomolgus monkeys and to compare its plasma and brain exposure-RO relationships with those of clinically tested mGlu5 NAMs dipraglurant, mavoglurant, and basimglurant. Potential sources of variability that may contribute to these relationships were explored. Distinct plasma exposure-response relationships were found for each mGlu5 NAM, with >100-fold difference in plasma exposure for a given level of RO. However, a unified exposure-response relationship was observed when both unbound brain concentration and mGlu5 affinity were considered. This relationship showed <10-fold overall difference, was fitted with a Hill slope that was not significantly different from 1, and appeared consistent with a simple Emax model. This is the first time this type of comparison has been conducted, demonstrating a unified brain exposure-RO relationship across several species and mGlu5 NAMs with diverse properties. SIGNIFICANCE STATEMENT: Despite the long history of mGlu5 as a therapeutic target and progression of multiple compounds to the clinic, no formal comparison of exposure-receptor occupancy relationships has been conducted. The data from this study indicate for the first time that a consistent, unified relationship can be observed between exposure and mGlu5 receptor occupancy when unbound brain concentration and receptor affinity are taken into account across a range of species for a diverse set of mGlu5 negative allosteric modulators, including a new drug candidate, HTL0014242.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Fármacos Atuantes sobre Aminoácidos Excitatórios
/
Receptor de Glutamato Metabotrópico 5
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article