Your browser doesn't support javascript.
loading
Ethanol-Related Behaviors in Mouse Lines Selectively Bred for Drinking to Intoxication.
Jensen, Bryan E; Townsley, Kayla G; Grigsby, Kolter B; Metten, Pamela; Chand, Meher; Uzoekwe, Miracle; Tran, Alex; Firsick, Evan; LeBlanc, Katherine; Crabbe, John C; Ozburn, Angela R.
Afiliação
  • Jensen BE; Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR 97239, USA.
  • Townsley KG; Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR 97239, USA.
  • Grigsby KB; Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR 97239, USA.
  • Metten P; Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR 97239, USA.
  • Chand M; Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR 97239, USA.
  • Uzoekwe M; Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR 97239, USA.
  • Tran A; Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR 97239, USA.
  • Firsick E; Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR 97239, USA.
  • LeBlanc K; Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR 97239, USA.
  • Crabbe JC; Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR 97239, USA.
  • Ozburn AR; Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, OR 97239, USA.
Brain Sci ; 11(2)2021 Feb 04.
Article em En | MEDLINE | ID: mdl-33557285
Alcohol use disorder (AUD) is a devastating psychiatric disorder that has significant wide-reaching effects on individuals and society. Selectively bred mouse lines are an effective means of exploring the genetic and neuronal mechanisms underlying AUD and such studies are translationally important for identifying treatment options. Here, we report on behavioral characterization of two replicate lines of mice that drink to intoxication, the High Drinking in the Dark (HDID)-1 and -2 mice, which have been selectively bred (20+ generations) for the primary phenotype of reaching high blood alcohol levels (BALs) during the drinking in the dark (DID) task, a binge-like drinking assay. Along with their genetically heterogenous progenitor line, Hs/Npt, we tested these mice on: DID and drinking in the light (DIL); temporal drinking patterns; ethanol sensitivity, through loss of righting reflex (LORR); and operant self-administration, including fixed ratio (FR1), fixed ratio 3:1 (FR3), extinction/reinstatement, and progressive ratio (PR). All mice consumed more ethanol during the dark than the light and both HDID lines consumed more ethanol than Hs/Npt during DIL and DID. In the dark, we found that the HDID lines achieved high blood alcohol levels early into a drinking session, suggesting that they exhibit front loading like drinking behavior in the absence of the chronicity usually required for such behavior. Surprisingly, HDID-1 (female and male) and HDID-2 (male) mice were more sensitive to the intoxicating effects of ethanol during the dark (as determined by LORR), while Hs/Npt (female and male) and HDID-2 (female) mice appeared less sensitive. We observed lower HDID-1 ethanol intake compared to either HDID-2 or Hs/Npt during operant ethanol self-administration. There were no genotype differences for either progressive ratio responding, or cue-induced ethanol reinstatement, though the latter is complicated by a lack of extinguished responding behavior. Taken together, these findings suggest that genes affecting one AUD-related behavior do not necessarily affect other AUD-related behaviors. Moreover, these findings highlight that alcohol-related behaviors can also differ between lines selectively bred for the same phenotype, and even between sexes within those same line.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article