Your browser doesn't support javascript.
loading
Facile fabrication of magnetic covalent organic frameworks and their application in selective enrichment of polychlorinated naphthalenes from fine particulate matter.
Guo, Wenjing; Wang, Wenli; Yang, Yixin; Zhang, Shasha; Yang, Baichuan; Ma, Wende; He, Yu; Lin, Zian; Cai, Zongwei.
Afiliação
  • Guo W; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China.
  • Wang W; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China.
  • Yang Y; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China.
  • Zhang S; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China.
  • Yang B; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China.
  • Ma W; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China.
  • He Y; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China.
  • Lin Z; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China. zianlin@fzu.edu.cn.
  • Cai Z; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China. zwcai@hkbu.edu.hk.
Mikrochim Acta ; 188(3): 91, 2021 02 18.
Article em En | MEDLINE | ID: mdl-33598812
ABSTRACT
Magnetic covalent organic frameworks (Fe3O4@TPPCl4) were synthesized via a one-pot process in which magnetic nanoparticles (Fe3O4@MNP) served as a magnetic core and 2,4,6-trihydroxy-1,3,5-benzenetricarbaldehyde (TP) and 2,2',5,5'-tetrachlorobenzidine (PCl4) as two building blocks to form a shell. The as-prepared Fe3O4@TPPCl4 nanoparticles have superior features, including large surface area (186.5 m2 g-1), high porosity, strong magnetic responsiveness (42.6 emu g-1), high chlorine content, and outstanding thermal stability, which make them an ideal adsorbent for highly selective enrichment of polychlorinated naphthalenes (PCNs). Combining with atmospheric pressure gas chromatography tandem mass spectrometry (APGC-MS/MS), a simple analytical method of Fe3O4@TPPCl4-based magnetic solid-phase extraction (MSPE)-APGC-MS/MS was developed, which exhibited good linearity (r ≥ 0.9991) for eight PCNs in the concentration range 0.1-100 ng L-1. Moreover, low detection limits (0.005-0.325 ng L-1), high enrichment factors (46.62-81.97-fold), and good relative standard deviations (RSDs) of inter-day (n = 3, 1.64 to 7.44%) and day-to-day (n = 3, 2.62 to 8.23%) were achieved. This method was successfully applied to the selective enrichment of PCNs in fine particulate matter (PM)2.5 samples, and ultra-trace PCNs were found in the range 1.56-3.75 ng kg-1 with satisfactory recoveries (93.11-105.81%). The successful application demonstrated the great potential of Fe3O4@TPPCl4 nanoparticles as an adsorbent for enrichment of halogenated compounds. Schematic presented one-pot synthesis of magnetic covalent organic framework nanocomposites (Fe3O4@TPPCl4) and their application in the selective enrichment of PCNs from PM2.5 prior to APGC-MS/MS analysis.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article