Your browser doesn't support javascript.
loading
Experience Sampling and Programmed Intervention Method and System for Planning, Authoring, and Deploying Mobile Health Interventions: Design and Case Reports.
Cunha, Bruna Carolina Rodrigues; Rodrigues, Kamila Rios Da Hora; Zaine, Isabela; da Silva, Elias Adriano Nogueira; Viel, Caio César; Pimentel, Maria Da Graça Campos.
Afiliação
  • Cunha BCR; Federal Institute of Education, Science and Technology of São Paulo, Capivari, Brazil.
  • Rodrigues KRDH; Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil.
  • Zaine I; Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil.
  • da Silva EAN; Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil.
  • Viel CC; Sidia Institute of Science and Technology, Manaus, Brazil.
  • Pimentel MDGC; Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil.
J Med Internet Res ; 23(7): e24278, 2021 07 12.
Article em En | MEDLINE | ID: mdl-34255652
ABSTRACT

BACKGROUND:

Health professionals initiating mobile health (mHealth) interventions may choose to adapt apps designed for other activities (eg, peer-to-peer communication) or to employ purpose-built apps specialized in the required intervention, or to exploit apps based on methods such as the experience sampling method (ESM). An alternative approach for professionals would be to create their own apps. While ESM-based methods offer important guidance, current systems do not expose their design at a level that promotes replicating, specializing, or extending their contributions. Thus, a twofold solution is required a method that directs specialists in planning intervention programs themselves, and a model that guides specialists in adopting existing solutions and advises software developers on building new ones.

OBJECTIVE:

The main objectives of this study are to design the Experience Sampling and Programmed Intervention Method (ESPIM), formulated toward supporting specialists in deploying mHealth interventions, and the ESPIM model, which guides health specialists in adopting existing solutions and advises software developers on how to build new ones. Another goal is to conceive and implement a software platform allowing specialists to be users who actually plan, create, and deploy interventions (ESPIM system).

METHODS:

We conducted the design and evaluation of the ESPIM method and model alongside a software system comprising integrated web and mobile apps. A participatory design approach with stakeholders included early software prototype, predesign interviews with 12 health specialists, iterative design sustained by the software as an instance of the method's conceptual model, support to 8 real case studies, and postdesign interviews.

RESULTS:

The ESPIM comprises (1) a list of requirements for mHealth experience sampling and intervention-based methods and systems, (2) a 4-dimension planning framework, (3) a 7-step-based process, and (4) an ontology-based conceptual model. The ESPIM system encompasses web and mobile apps. Eight long-term case studies, involving professionals in psychology, gerontology, computer science, speech therapy, and occupational therapy, show that the method allowed specialists to be actual users who plan, create, and deploy interventions via the associated system. Specialists' target users were parents of children diagnosed with autism spectrum disorder, older persons, graduate and undergraduate students, children (age 8-12), and caregivers of older persons. The specialists reported being able to create and conduct their own studies without modifying their original design. A qualitative evaluation of the ontology-based conceptual model showed its compliance to the functional requirements elicited.

CONCLUSIONS:

The ESPIM method succeeds in supporting specialists in planning, authoring, and deploying mobile-based intervention programs when employed via a software system designed and implemented according to its conceptual model. The ESPIM ontology-based conceptual model exposes the design of systems involving active or passive sampling interventions. Such exposure supports the evaluation, implementation, adaptation, or extension of new or existing systems.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Telemedicina / Aplicativos Móveis / Transtorno do Espectro Autista Tipo de estudo: Guideline / Prognostic_studies / Qualitative_research Limite: Aged / Aged80 / Child / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Telemedicina / Aplicativos Móveis / Transtorno do Espectro Autista Tipo de estudo: Guideline / Prognostic_studies / Qualitative_research Limite: Aged / Aged80 / Child / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article