Your browser doesn't support javascript.
loading
Different roles for the acyl chain and the amine leaving group in the substrate selectivity of N-Acylethanolamine acid amidase.
Ghidini, Andrea; Scalvini, Laura; Palese, Francesca; Lodola, Alessio; Mor, Marco; Piomelli, Daniele.
Afiliação
  • Ghidini A; Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy.
  • Scalvini L; Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy.
  • Palese F; Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
  • Lodola A; Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy.
  • Mor M; Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy.
  • Piomelli D; Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
J Enzyme Inhib Med Chem ; 36(1): 1411-1423, 2021 Dec.
Article em En | MEDLINE | ID: mdl-34256657
N-acylethanolamine acid amidase (NAAA) is an N-terminal nucleophile (Ntn) hydrolase that catalyses the intracellular deactivation of the endogenous analgesic and anti-inflammatory agent palmitoylethanolamide (PEA). NAAA inhibitors counteract this process and exert marked therapeutic effects in animal models of pain, inflammation and neurodegeneration. While it is known that NAAA preferentially hydrolyses saturated fatty acid ethanolamides (FAEs), a detailed profile of the relationship between catalytic efficiency and fatty acid-chain length is still lacking. In this report, we combined enzymatic and molecular modelling approaches to determine the effects of acyl chain and polar head modifications on substrate recognition and hydrolysis by NAAA. The results show that, in both saturated and monounsaturated FAEs, the catalytic efficiency is strictly dependent upon fatty acyl chain length, whereas there is a wider tolerance for modifications of the polar heads. This relationship reflects the relative stability of enzyme-substrate complexes in molecular dynamics simulations.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inibidores Enzimáticos / Amidoidrolases / Aminas Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inibidores Enzimáticos / Amidoidrolases / Aminas Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article