Your browser doesn't support javascript.
loading
A synthetic tubular molecular transport system.
Stömmer, Pierre; Kiefer, Henrik; Kopperger, Enzo; Honemann, Maximilian N; Kube, Massimo; Simmel, Friedrich C; Netz, Roland R; Dietz, Hendrik.
Afiliação
  • Stömmer P; Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department, Technische Universität München, Munich, Germany.
  • Kiefer H; Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
  • Kopperger E; Lehrstuhl für Physik Synthetischer Biosysteme, Physik Department, Technische Universität München, Munich, Germany.
  • Honemann MN; Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department, Technische Universität München, Munich, Germany.
  • Kube M; Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department, Technische Universität München, Munich, Germany.
  • Simmel FC; Lehrstuhl für Physik Synthetischer Biosysteme, Physik Department, Technische Universität München, Munich, Germany.
  • Netz RR; Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
  • Dietz H; Lehrstuhl für Biomolekulare Nanotechnologie, Physik Department, Technische Universität München, Munich, Germany. dietz@tum.de.
Nat Commun ; 12(1): 4393, 2021 07 20.
Article em En | MEDLINE | ID: mdl-34285204
ABSTRACT
Creating artificial macromolecular transport systems that can support the movement of molecules along defined routes is a key goal of nanotechnology. Here, we report the bottom-up construction of a macromolecular transport system in which molecular pistons diffusively move through micrometer-long, hollow filaments. The pistons can cover micrometer distances in fractions of seconds. We build the system using multi-layer DNA origami and analyze the structures of the components using transmission electron microscopy. We study the motion of the pistons along the tubes using single-molecule fluorescence microscopy and perform Langevin simulations to reveal details of the free energy surface that directs the motions of the pistons. The tubular transport system achieves diffusivities and displacement ranges known from natural molecular motors and realizes mobility improvements over five orders of magnitude compared to previous artificial random walker designs. Electric fields can also be employed to actively pull the pistons along the filaments, thereby realizing a nanoscale electric rail system. Our system presents a platform for artificial motors that move autonomously driven by chemical fuels and for performing nanotribology studies, and it could form a basis for future molecular transportation networks.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / Nanotecnologia / Nanotubos / Movimento (Física) Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / Nanotecnologia / Nanotubos / Movimento (Física) Idioma: En Ano de publicação: 2021 Tipo de documento: Article