Your browser doesn't support javascript.
loading
Electronic Tuning of SnS2 Nanosheets by Hydrogen Incorporation for Efficient CO2 Electroreduction.
Zhang, An; Liang, Yongxiang; Li, Huiping; Wang, Shilong; Chang, Qixuan; Peng, Kaiyue; Geng, Zhigang; Zeng, Jie.
Afiliação
  • Zhang A; Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Un
  • Liang Y; Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Un
  • Li H; Department of Physics, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
  • Wang S; Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Un
  • Chang Q; Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Un
  • Peng K; Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Un
  • Geng Z; Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Un
  • Zeng J; Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Un
Nano Lett ; 21(18): 7789-7795, 2021 Sep 22.
Article em En | MEDLINE | ID: mdl-34460262
Surface functionalization with atoms serves as an important strategy to modulate the catalytic activities of low-dimensional nanomaterials. Herein, we developed a facile hydrogen incorporation strategy for improving the catalytic activities of SnS2 nanosheets toward CO2 electroreduction. Compared with SnS2 nanosheets, the hydrogen-incorporated SnS2 (denoted as H-SnS2) nanosheets exhibited high current density and Faradaic efficiency (FE) for formate. At -0.9 V vs RHE, H-SnS2 nanosheets displayed a maximum FE of 93% for carbonaceous product, which rivals the activities of most Sn-based catalysts in CO2 electroreduction. Mechanistic studies disclosed that the incorporation of surface hydrogen induced the electron injection into the structures of H-SnS2 nanosheets, which largely facilitates the process of CO2 activation. Density functional theory (DFT) calculations further revealed that hydrogen incorporation decreased the energy barrier for the formation of HCOO* intermediates, thus contributing to the CO2-to-formate conversion on H-SnS2 nanosheets.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article