Your browser doesn't support javascript.
loading
Biosequestration of lignin in municipal landfill leachate by tailored cationic lipoprotein biosurfactant through Bacillus tropicus valorized tannery solid waste.
Uddin, Maseed; Swathi, K V; Anil, Ananya; Boopathy, R; Ramani, K; Sekaran, G.
Afiliação
  • Uddin M; Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
  • Swathi KV; Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
  • Anil A; Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
  • Boopathy R; Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, Odisha, India.
  • Ramani K; Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India. Electronic address: ramanik@srmist.edu.in.
  • Sekaran G; SRM Institute of Science and Technology, Ramapuram, 600089, Tamil Nadu, India.
J Environ Manage ; 300: 113755, 2021 Dec 15.
Article em En | MEDLINE | ID: mdl-34537555
ABSTRACT
Bioremediation of municipal landfill leachate (MLL) is often intricate due to presence of refractory lignin. In the present study, it was attempted to tailor the histidine rich protein moiety of cationic lipoprotein biosurfactant (CLB) to sequester the lignin from MLL. Animal fleshing (AF), the solid waste generated in tanning industry was utilized for the production of histidine rich CLB by de novo substrate dependent synthesis pathway involving Bacillus tropicus. The optimum conditions for the maximum production of CLB were determined using response surface methodology. At the optimized conditions, the maximum yield of CLB was 217.4 mg/g AF (on dry basis). The produced histidine rich CLB was purified using Immobilized metal affinity chromatography at the optimum binding and elution conditions. The histidine residues were more pronounced in the CLB, as determined by HPLC analysis. The CLB was further characterized by SDS-PAGE, Zeta potential, XRD, FT-IR, Raman, NMR, GC-MS and TG analyses. The CLB was immobilized onto functionalized nanoporous activated bio carbon (FNABC) and the optimum immobilization capacity was found to be 211.6 mg/g FNABC. The immobilization of CLB onto FNABC was confirmed using SEM, FT-IR, XRD and TG analyses. The isotherm models, kinetic and thermodynamics studies of CLB immobilization onto FNABC were performed to evaluate its field level application. Subsequently, the CLB-FNABC was then applied for the sequestration of lignin in MLL. The maximum lignin sequestration was achieved by 92.5 mg/g CLB-FNABC at the optimized sequestration time, 180 min; pH, 5; temperature, 45 °C and mass of CLB-FNABC, 1.0 g. The sequestration of lignin by CLB- FNABC was confirmed by SEM, FT-IR and UV-Vis analyses. Further, the mechanistic study revealed the anchoring of CLB onto the surface of lignin through electrostatic interaction.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Eliminação de Resíduos Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Eliminação de Resíduos Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article