Your browser doesn't support javascript.
loading
Creld2 function during unfolded protein response is essential for liver metabolism homeostasis.
Kern, Paul; Balzer, Nora R; Blank, Nelli; Cygon, Cornelia; Wunderling, Klaus; Bender, Franziska; Frolov, Alex; Sowa, Jan-Peter; Bonaguro, Lorenzo; Ulas, Thomas; Homrich, Mirka; Kiermaier, Eva; Thiele, Christoph; Schultze, Joachim L; Canbay, Ali; Bauer, Reinhard; Mass, Elvira.
Afiliação
  • Kern P; Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
  • Balzer NR; Developmental Genetics & Molecular Physiology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
  • Blank N; Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
  • Cygon C; Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
  • Wunderling K; Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
  • Bender F; Biochemistry & Cell Biology of Lipids, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
  • Frolov A; Developmental Genetics & Molecular Physiology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
  • Sowa JP; Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
  • Bonaguro L; Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Magdeburg, Germany.
  • Ulas T; Department of Medicine, Ruhr University Bochum, University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany.
  • Homrich M; Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
  • Kiermaier E; Platform for Single Cell Genomics and Epigenomics at the Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, Bonn, Germany.
  • Thiele C; Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
  • Schultze JL; Platform for Single Cell Genomics and Epigenomics at the Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE), University of Bonn, Bonn, Germany.
  • Canbay A; Immune and Tumor Biology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
  • Bauer R; Immune and Tumor Biology, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
  • Mass E; Biochemistry & Cell Biology of Lipids, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
FASEB J ; 35(10): e21939, 2021 10.
Article em En | MEDLINE | ID: mdl-34549824
ABSTRACT
The unfolded protein response (UPR) is associated with hepatic metabolic function, yet it is not well understood how endoplasmic reticulum (ER) disturbance might influence metabolic homeostasis. Here, we describe the physiological function of Cysteine-rich with EGF-like domains 2 (Creld2), previously characterized as a downstream target of the ER-stress signal transducer Atf6. To this end, we generated Creld2-deficient mice and induced UPR by injection of tunicamycin. Creld2 augments protein folding and creates an interlink between the UPR axes through its interaction with proteins involved in the cellular stress response. Thereby, Creld2 promotes tolerance to ER stress and recovery from acute stress. Creld2-deficiency leads to a dysregulated UPR and causes the development of hepatic steatosis during ER stress conditions. Moreover, Creld2-dependent enhancement of the UPR assists in the regulation of energy expenditure. Furthermore, we observed a sex dimorphism in human and mouse livers with only male patients showing an accumulation of CRELD2 protein during the progression from non-alcoholic fatty liver disease to non-alcoholic steatohepatitis and only male Creld2-deficient mice developing hepatic steatosis upon aging. These results reveal a Creld2 function at the intersection between UPR and metabolic homeostasis and suggest a mechanism in which chronic ER stress underlies fatty liver disease in males.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Moléculas de Adesão Celular / Proteínas da Matriz Extracelular / Resposta a Proteínas não Dobradas / Homeostase / Fígado Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Moléculas de Adesão Celular / Proteínas da Matriz Extracelular / Resposta a Proteínas não Dobradas / Homeostase / Fígado Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article