Your browser doesn't support javascript.
loading
Electrochemical Detection of Linagliptin and its Interaction with DNA
Topkaya, Seda Nur; Kaya, Hüseyin Oguzhan; Cetin, Arif E.
Afiliação
  • Topkaya SN; Izmir Katip Çelebi University Faculty of Pharmacy, Department of Analytical Chemistry, Izmir, Turkey
  • Kaya HO; Izmir Katip Çelebi University Faculty of Pharmacy, Department of Analytical Chemistry, Izmir, Turkey
  • Cetin AE; Izmir Biomedicine and Genome Center, Izmir, Turkey
Turk J Pharm Sci ; 18(5): 645-651, 2021 10 28.
Article em En | MEDLINE | ID: mdl-34719193
ABSTRACT

Objectives:

Linagliptin (Lin) is a drug used in treatment of type 2 diabetes mellitus. In this study, the electrochemical detection of Lin and its interaction with DNA was analyzed for the first time using voltammetric methods by measuring the oxidation currents of the adenine bases of DNA before and after the interaction. In addition, the electrochemical properties of the Lin were studied. Materials and

Methods:

The interaction between Lin and DNA was evaluated using differential pulse voltammetry. A three-electrode system comprising of a pencil graphite electrode as the working electrode, reference electrode (Ag/AgCl), and platinum wire as the auxiliary electrode was used in the electrochemical studies. Experimental conditions, such as the concentration, pH of the supporting electrolyte, and immobilization time were optimized to obtain maximum analytical signals.

Results:

The adenine bases of DNA were evaluated as an analytical signal obtained at approximately +1.2 V vs. Ag/AgCl. After the Lin-DNA interaction, the oxidation currents of adenine decreased as proof of interaction. No reports have been published on Lin interacting with DNA. Based on our results, a diffusion-controlled irreversible redox process involving independent oxidation was revealed for Lin. Under optimum conditions, the detection limit was 6.7 µg/mL for DNA and 21.5 µg/mL for Lin. Based on the observations, Lin has a toxic effect on DNA.

Conclusion:

We successfully demonstrated that Lin interacts with DNA, and its influence on DNA could play a vital role in the medical effect of the drug.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article