Your browser doesn't support javascript.
loading
Crafting the plant root metabolome for improved microbe-assisted stress resilience.
Hong, Yechun; Zhou, Qian; Hao, Yuqiong; Huang, Ancheng C.
Afiliação
  • Hong Y; Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
  • Zhou Q; Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
  • Hao Y; Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
  • Huang AC; Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
New Phytol ; 234(6): 1945-1950, 2022 06.
Article em En | MEDLINE | ID: mdl-34877653
ABSTRACT
Plants and microbes coinhabit the earth and have coevolved during environmental changes over time. Root metabolites are the key to mediating the dynamic association between plants and microbes, yet the underlying functions and mechanisms behind this remain largely illusive. Knowledge of metabolite-mediated alteration of the root microbiota in response to environmental stress will open avenues for engineering root microbiotas for improved plant stress resistance and health. Here, we synthesize recent advances connecting environmental stresses, the root metabolome and microbiota, and propose integrated synthetic biology-based strategies for tuning the plant root metabolome in situ for microbe-assisted stress resistance, offering potential solutions to combat climate change. The current limitations, challenges and perspectives for engineering the plant root metabolome for modulating microbiota are collectively discussed.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbiota Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbiota Idioma: En Ano de publicação: 2022 Tipo de documento: Article