Your browser doesn't support javascript.
loading
Gravity-driven layered double hydroxide nanosheet membrane activated peroxymonosulfate system for micropollutant degradation.
Asif, Muhammad Bilal; Kang, Hongyu; Zhang, Zhenghua.
Afiliação
  • Asif MB; Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
  • Kang H; Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
  • Zhang Z; Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China. Electronic address: zhenghua.zhang@sz.tsinghua.edu.cn.
J Hazard Mater ; 425: 127988, 2022 Mar 05.
Article em En | MEDLINE | ID: mdl-34891018
For the first time in this study, CoAl-layered double hydroxide nanosheet membrane (LDHm) with abundant active sites was fabricated for peroxymonosulfate (PMS) activation with the mindset to catalytically degrade micropollutants. Depending on the catalyst loading, the developed LDHm can be driven under gravity at a permeate flux of approximately 80 L/m2 h and 210 L/m2 h at LDH loading of 0.80 mg/cm2 and 0.08 mg/cm2, respectively. Notably, the LDHm (0.63 mg) exhibited excellent PMS activation efficiency as indicated by 87.8% removal of the probe chemical (ranitidine) at 0.2 mM PMS, which was higher than that (37-44%) achieved by conventional LDH (5-20 mg)/PMS (0.2 mM) system. In addition to efficient degradation of several micropollutants, LDHm/PMS performance was not inhibited by variation in solution pH (4-8) as well as during long-term (29 h) continuous-flow operation. SO4•- and 1O2 were identified as the primary reactive species in the LDHm/PMS system, while both Co and Al participated in PMS activation. This study offers a simple strategy for efficient removal of several micropollutants with significantly reduced catalyst leaching, which could be applied sustainably in water treatment.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article