Your browser doesn't support javascript.
loading
Coupling traction force patterns and actomyosin wave dynamics reveals mechanics of cell motion.
Ghabache, Elisabeth; Cao, Yuansheng; Miao, Yuchuan; Groisman, Alex; Devreotes, Peter N; Rappel, Wouter-Jan.
Afiliação
  • Ghabache E; Department of Physics, University of California, San Diego, La Jolla, CA, USA.
  • Cao Y; Department of Physics, University of California, San Diego, La Jolla, CA, USA.
  • Miao Y; Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
  • Groisman A; Department of Physics, University of California, San Diego, La Jolla, CA, USA.
  • Devreotes PN; Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
  • Rappel WJ; Department of Physics, University of California, San Diego, La Jolla, CA, USA.
Mol Syst Biol ; 17(12): e10505, 2021 12.
Article em En | MEDLINE | ID: mdl-34898015
Motile cells can use and switch between different modes of migration. Here, we use traction force microscopy and fluorescent labeling of actin and myosin to quantify and correlate traction force patterns and cytoskeletal distributions in Dictyostelium discoideum cells that move and switch between keratocyte-like fan-shaped, oscillatory, and amoeboid modes. We find that the wave dynamics of the cytoskeletal components critically determine the traction force pattern, cell morphology, and migration mode. Furthermore, we find that fan-shaped cells can exhibit two different propulsion mechanisms, each with a distinct traction force pattern. Finally, the traction force patterns can be recapitulated using a computational model, which uses the experimentally determined spatiotemporal distributions of actin and myosin forces and a viscous cytoskeletal network. Our results suggest that cell motion can be generated by friction between the flow of this network and the substrate.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Actomiosina / Dictyostelium Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Actomiosina / Dictyostelium Idioma: En Ano de publicação: 2021 Tipo de documento: Article