Your browser doesn't support javascript.
loading
Brain White Matter Development Over the First 13 Years in Very Preterm and Typically Developing Children Based on the T 1-w/T 2-w Ratio.
Thompson, Deanne K; Yang, Joseph Y M; Chen, Jian; Kelly, Claire E; Adamson, Christopher L; Alexander, Bonnie; Gilchrist, Courtney; Matthews, Lillian G; Lee, Katherine J; Hunt, Rodney W; Cheong, Jeanie L Y; Spencer-Smith, Megan; Neil, Jeffrey J; Seal, Marc L; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J.
Afiliação
  • Thompson DK; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Yang JYM; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Chen J; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Kelly CE; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Adamson CL; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Alexander B; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Gilchrist C; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Matthews LG; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Lee KJ; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Hunt RW; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Cheong JLY; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Spencer-Smith M; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Neil JJ; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Seal ML; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Inder TE; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Doyle LW; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
  • Anderson PJ; From the Victorian Infant Brain Study (VIBeS) (D.T., C.K.), Developmental Imaging (J. Chen, C.L.A., M.S.), and Clinical Epidemiology and Biostatistics Unit (K.J.L.), Murdoch Children's Research Institute; Department of Neurosurgery (J.Y.-M.Y., B.A.) and Neonatal Medicine (R.H.), The Royal Children's
Neurology ; 98(9): e924-e937, 2022 03 01.
Article em En | MEDLINE | ID: mdl-34937788
ABSTRACT
BACKGROUND AND

OBJECTIVES:

To investigate brain regional white matter development in full-term (FT) and very preterm (VP) children at term equivalent and 7 and 13 years of age based on the ratio of T 1- and T 2-weighted MRI (T 1-w/T 2-w), including (1) whether longitudinal changes differ between birth groups or sexes, (2) associations with perinatal risk factors in VP children, and (3) relationships with neurodevelopmental outcomes at 13 years.

METHODS:

Prospective longitudinal cohort study of VP (born <30 weeks' gestation or <1,250 g) and FT infants born between 2001 and 2004 and followed up at term equivalent and 7 and 13 years of age, including MRI studies and neurodevelopmental assessments. T 1-w/T 2-w images were parcellated into 48 white matter regions of interest.

RESULTS:

Of 224 VP participants and 76 FT participants, 197 VP and 55 FT participants had useable T 1-w/T 2-w data from at least one timepoint. T 1-w/T 2-w values increased between term equivalent and 13 years of age, with little evidence that longitudinal changes varied between birth groups or sexes. VP birth, neonatal brain abnormalities, being small for gestational age, and postnatal infection were associated with reduced regional T 1-w/T 2-w values in childhood and adolescence. Increased T 1-w/T 2-w values across the white matter at 13 years were associated with better motor and working memory function for all children. Within the FT group only, larger increases in T 1-w/T 2-w values from term equivalent to 7 years were associated with poorer attention and executive function, and higher T 1-w/T 2-w values at 7 years were associated with poorer mathematics performance.

DISCUSSION:

VP birth and multiple known perinatal risk factors are associated with long-term reductions in the T 1-w/T 2-w ratio in white matter regions in childhood and adolescence, which may relate to alterations in microstructure and myelin content. Increased T 1-w/T 2-w ratio at 13 years appeared to be associated with better motor and working memory function and there appeared to be developmental differences between VP and FT children in the associations for attention, executive functioning, and mathematics performance.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Substância Branca Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Adolescent / Child / Female / Humans / Infant / Newborn / Pregnancy Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Substância Branca Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Adolescent / Child / Female / Humans / Infant / Newborn / Pregnancy Idioma: En Ano de publicação: 2022 Tipo de documento: Article